Advertisement

Cluster Computing

, Volume 20, Issue 4, pp 3003–3014 | Cite as

Coded-exposure camera and its circuits design

  • Xiang LiEmail author
  • Yi Sun
Article
  • 373 Downloads

Abstract

In the industrial production line, the motion of the target is the main reason for blurred image of the camera monitoring. A coded-exposure devices and circuits are designed to get restored image from this motion blurring. A given binary code sequence which represent open or close of shutter in CCD circuits driven by FPGA is used to control the exposure-time. The sampled images are processed by deconvolution algorithm and the high frequency information of them could be preserved by using the coded-exposure sequence resulting in blurred image restoration. The de-blurred problem could be converted to a well-posed from an ill-posed one. Experiments demonstrate that using the coded-exposure, the device proposed is able to improve the quality of blurred image.

Keywords

Coded-exposure Motion blurred Image restoration Circuits design 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61503054).

References

  1. 1.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Gr. 27(3), 15–19 (2008)CrossRefGoogle Scholar
  2. 2.
    Fujino, A., et al.: Exposure control device for a camera, J. Minolta Camera Kabushiki Kaisha Osaka, J. Minolta Camera Kabushiki Kaisha Osaka\(^{\wedge }\)Editors. 1988, US. p. 42Google Scholar
  3. 3.
    Svensson, F., Tuvesson, J., Haals, L.: Method and control unit for controlling exposure of a camera, S. Axis AB Lund, S. Axis AB Lund\(^{\wedge }\)Editors. p. 15 (2016)Google Scholar
  4. 4.
    Cao, Q.L., et al.: Adaptive exposure of space camera. Acta Photonica Sinica 45(8), 0822003.1–0822003.6 (2016)Google Scholar
  5. 5.
    Su, Y., Kuo, C.C.J.: Fast and robust camera’s auto exposure control using convex or concave model. In: IEEE International Conference on Consumer Electronics (ICCE), NV, US, pp. 13–14 (2015)Google Scholar
  6. 6.
    Su, Y., Lin, J.Y., Kuo, C.C.J.: A model-based approach to camera’s auto exposure control. J. Vis. Commun. Image Represent. 36, 122–129 (2016)CrossRefGoogle Scholar
  7. 7.
    Akiba, K.: Control of exposure of camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. US. p. 17 (2015)Google Scholar
  8. 8.
    Murao, T.: Method of determining exposure control value for vehicle-mounted camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. 2016, US, p. 10Google Scholar
  9. 9.
    Murao, T., Kimura, T.: Exposure control apparatus for vehicle-mounted camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. 2016, US, p. 11Google Scholar
  10. 10.
    Grimm, M.: Camera-based driver assistance systems. Adv. Opt. Technol. 2(2), 131–140 (2016)Google Scholar
  11. 11.
    Haraguchi, Y., Shinohara, M.: Image blur correction unit, image blur compensation device, and optical apparatus, Kawasaki-shi, Kawasaki-shi\(^{\wedge }\)Editors, US. p. 19 (2015)Google Scholar
  12. 12.
    Yasuda, K.: Camera shake compensation mechanism and optical apparatus using the camera shake compensation mechanism, I. Konica Minolta Photo Imaging, I. Konica Minolta Photo Imaging\(^{\wedge }\)Editors, US. p. 11 (2006)Google Scholar
  13. 13.
    Bigas, M., et al.: Review of CMOS image sensors. Microelectron. J. 37(5), 433–451 (2006)CrossRefGoogle Scholar
  14. 14.
    Hamamoto, T., Aizawa, K.: A computational image sensor with adaptive pixel-based integration time. IEEE J. Solid-State Circuits 36(4), 580–585 (2001)CrossRefGoogle Scholar
  15. 15.
    Feng, W., et al.: Per-pixel coded exposure for high-speed and high-resolution imaging using a digital micromirror device camera. Sensors 16(3), 331–346 (2016)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, J., et al.: Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure. Opt. Express 24(8), 9013–24 (2016)CrossRefGoogle Scholar
  17. 17.
    Benezra, M., Nayar, S.K.: Motion-based motion deblurring. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 689–698 (2004)CrossRefGoogle Scholar
  18. 18.
    Tai, Y.W., et al.: Image/video deblurring using a hybrid camera. In: IEEE Conference on Computer Vision & Pattern Recognition, Alaska, USA (2008)Google Scholar
  19. 19.
    Tai, Y.W., et al.: Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1012–1028 (2010)CrossRefGoogle Scholar
  20. 20.
    Yitzhaky, Y., et al.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. A 30200100(100), 1512–1519 (1998)CrossRefGoogle Scholar
  21. 21.
    Delgrande, J., et al.: Handling motion blur in multi-frame super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5224–5232 (2015)Google Scholar
  22. 22.
    Delbracio, M., Sapiro, G.: Burst deblurring: removing camera shake through fourier burst accumulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2385–2393. IEEE, Boston, USA (2015)Google Scholar
  23. 23.
    Lai, W.S., et al.: Blur kernel estimation using normalized color-line priors. In: IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA (2015)Google Scholar
  24. 24.
    Cho, T.S., et al.: Blur kernel estimation using the radon transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 241–248. Colorado, USA (2011)Google Scholar
  25. 25.
    Jia, J.: Single image motion Deblurring using transparency. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 1–8. IEEE, MN, USA (2007)Google Scholar
  26. 26.
    Levin, A., et al.: Motion-invariant photography. ACM Trans. Gr. 27(3), 2008 (2008)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Tai, Y.W., et al.: Coded exposure imaging for projective motion deblurring. Comput. Vision Pattern Recognit. 238(6), 2408–2415 (2010)Google Scholar
  28. 28.
    Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 89–97 (2009)CrossRefGoogle Scholar
  29. 29.
    Cho, T.S., et al.: Motion blur removal with orthogonal parabolic exposures. In: IEEE International Conference on Computational Photography, MA, USA (2010)Google Scholar
  30. 30.
    Agrawal, A., Xu, Y.: Coded exposure deblurring: optimized codes for PSF estimation and invertibility. In: IEEE Conference on Computer Vision & Pattern Recognition. FL, USA (2009)Google Scholar
  31. 31.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. 25(3), 795–804 (2006)CrossRefGoogle Scholar
  32. 32.
    McCloskey, S., Ding, Y., Yu, J.: Design and estimation of coded exposure point spread functions. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2071–2077 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhou, C., Nayar, S.: What are good apertures for defocus deblurring? In: IEEE International Conference on Computational Photography. San Francisco, USA (2009)Google Scholar
  34. 34.
    Horita, Y., et al.: Coded aperture for projector and camera for robust 3D measurement. In: International Conference on Pattern Recognition. Tsukuba, Japan (2012)Google Scholar
  35. 35.
    Su, S., Heidrich, W.: Rolling shutter motion deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1537. MA, US (2015)Google Scholar
  36. 36.
    Zhou, C., Lin, S., Nayar, S.K.: Coded aperture pairs for depth from defocus and defocus deblurring. Int. J. Comput. Vision 93(1), 325–332 (2011)CrossRefGoogle Scholar
  37. 37.
    Agrawal, A., Raskar, R.: Optimal single image capture for motion deblurring. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 2560–2567. FL, USA (2009)Google Scholar
  38. 38.
    Tendero, Y., Osher, S.: On a mathematical theory of coded exposure. Res. Math. Sci. 3(1), 1–39 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Dai, S., Wu, Y.: Motion from blur. In: IEEE Conference on Computer Vision & Pattern Recognition, Alaska, USA (2008)Google Scholar
  40. 40.
    Huang, K., et al.: Motion Blur Identification Using Image Statistics for Coded Exposure Photography. Emerging Technologies for Information Systems, Computing, and Management. Springer New York, pp. 461–468 (2013)Google Scholar
  41. 41.
    Zhou, Q., Luo, J.: Artificial neural network based grid computing of E-government scheduling for emergency management. Comput. Syst. Sci. Eng. 30(5), 327–335 (2015)Google Scholar
  42. 42.
    Zhou, Qingyuan: Research on heterogeneous data integration model of group enterprise based on cluster computing. Clust. Comput. 19(3), 1275–1282 (2016). doi: 10.1007/s10586-016-0580-y CrossRefGoogle Scholar
  43. 43.
    Zhou, Q., Luo, J.: The service quality evaluation of ecologic economy systems using simulation computing. Comput. Syst. Sci. Eng. 31(6), 453–460 (2016)MathSciNetGoogle Scholar
  44. 44.
    Fenimore, E.E., Cannon, T.M.: Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17(3), 337–47 (1978)CrossRefGoogle Scholar
  45. 45.
    Xu, C., S. Chao and M. Chan. A new correlated double sampling (CDS) technique for low voltage design environment in advanced CMOS technology. in Proceedings of the European Solid-State Circuits Conference. 2002. Firenze, ItalyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of Information EngineeringDalian Ocean UniversityDalianPeople’s Republic of China

Personalised recommendations