Cluster Computing

, Volume 20, Issue 4, pp 2943–2953 | Cite as

Computational optimal control for the time fractional convection-diffusion-reaction system

  • Qiyu Liu
  • Qunxiong ZhuEmail author
  • Longjin Lv


This paper proposes a numerical approximation method for computational optimal control of a time fractional convection-diffusion-reaction system. The proposed method involves discretizing the spatial domain by finite element method, approximating the admissible controls by control parameterization, and then obtaining an optimal parameter selection problem which can be solved by numerical optimization algorithms such as sequential quadratic programming. Specifically, an implicit finite difference method is employed to solve the time fractional system, and the sensitivity method for gradient computation in integer order optimal control problems is adjusted to the fractional order case. Simulation results demonstrate the validity and accuracy of the proposed numerical approximation method.


Optimal control Fractional differential equation Control parameterization method Convection-diffusion-reaction system 



This work was partially supported by the Natural Science Foundation of Zhejiang (Grant No. LY17A010020).


  1. 1.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104, 1349–1387 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Longjin, L., Ren, F., Qiu, W.: The application of fractional derivatives in stochastic models driven by fractional Brownian motion. Phys. A: Stat. Mech. Appl. 389, 4809–4818 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Guo, S., Mei, L., Li, Y., Sun, Y.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Langlands, T., Henry, B.I.: Fractional chemotaxis diffusion equations. Phys. Rev. E 81, 051102 (2010)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Zares-Ram, R.C.A., Rez, I., Espinosa-Paredes, G.: Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs. J. King Saud Univ. Sci. 28, 21–28 (2016)CrossRefGoogle Scholar
  7. 7.
    Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. Fract. Calc. Appl. Anal. 10, 169–187 (2007)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng. Anal. Bound. Elem. 36, 1522–1527 (2012)Google Scholar
  11. 11.
    Chen-Charpentier, B.M., Kojouharov, H.V.: An unconditionally positivity preserving scheme for advection-diffusion reaction equations. Math. Comput. Model. 57, 2177–2185 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Qian, L., Cai, H., Guo, R., Feng, X.: The characteristic variational multiscale method for convection-dominated convection-diffusion-reaction problems. Int. J. Heat Mass Transf. 72, 461–469 (2014)CrossRefGoogle Scholar
  13. 13.
    Cui, M.: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Behroozifar, M., Sazmand, A.: An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation. Appl. Math. Comput. 296, 1–17 (2017)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chen, H., Lu, S., Chen, W.: Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Teo, K.L., Goh, C., Wong, K.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Harlow (1991)zbMATHGoogle Scholar
  18. 18.
    Loxton, R.C., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Li, M., Christofides, P.D.: Optimal control of diffusion-convection-reaction processes using reduced-order models. Comput. Chem. Eng. 32, 2123–2135 (2008)CrossRefGoogle Scholar
  20. 20.
    Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Akman, T.U.G.B., Karas, B.U.L., Zen, O.: Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations. J. Comput. Appl. Math. 272, 41–56 (2014)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lube, G., Tews, B.: Optimal control of singularly perturbed advection-diffusion-reaction problems. Math. Models Methods Appl. Sci. 20, 375–395 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ng, J., Dubljevic, S.: Optimal boundary control of a diffusion-convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process. Chem. Eng. Sci. 67, 111–119 (2012)CrossRefGoogle Scholar
  24. 24.
    Aksikas, I., Mohammadi, L., Forbes, J.F., Belhamadia, Y., Dubljevic, S.: Optimal control of an advection-dominated catalytic fixed-bed reactor with catalyst deactivation. J. Process Control 23, 1508–1514 (2013)CrossRefGoogle Scholar
  25. 25.
    Yu, X., Ren, Z., Xu, C.: An approximation for the boundary optimal control problem of a heat equation defined in a variable domain. Chin. Phys. B 23, 76–82 (2014)Google Scholar
  26. 26.
    Chen, T., Ren, Z., Xu, C., Loxton, R.: Optimal boundary control for water hammer suppression in fluid transmission pipelines. Comput. Math. Appl. 69, 275–290 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Chen, T., Xu, C., Lin, Q., Loxton, R., Teo, K.L.: Water hammer mitigation via PDE-constrained optimization. Control Eng. Pract. 45, 54–63 (2015)CrossRefGoogle Scholar
  28. 28.
    Ren, Z., Xu, C., Lin, Q., Loxton, R., Teo, K.L.: Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas. Commun. Nonlinear Sci. Numer. Simul. 32, 31–48 (2016)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Mophou, G.M.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Toledo-Hernandez, R., Rico-Ramirez, V., Rico-Martinez, R., Hernandez-Castro, S., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: numerical solution of fractional optimal control problems. Chem. Eng. Sci. 117, 239–247 (2014)CrossRefGoogle Scholar
  31. 31.
    Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S., Abdelkawy, M.A.: An accurate numerical technique for solving fractional optimal control problems. Differ. Equ. 15, 23 (2015)zbMATHGoogle Scholar
  32. 32.
    Du, N., Wang, H., Liu, W.: A fast gradient projection method for a constrained fractional optimal control. J. Sci. Comput. 68, 1–20 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Javad Sabouri, S.A.P.M, Effati, K.: A neural network approach for solving a class of fractional optimal control problems. Neural Process. Lett. 45, 59–74 (2017)Google Scholar
  34. 34.
    Tang, X., Liu, Z., Wang, X.: Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica 62, 304–311 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71, 301–318 (2016)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Johnson, C.: Numerical solution of partial differential equations by the finite element method, Courier Corporation (2012)Google Scholar
  37. 37.
    Li, E.S.U.: Lecture Notes on Finite Element Methods for Partial Differential Equations. University of Oxford, Mathematical Institute, Oxford (2012)Google Scholar
  38. 38.
    Zhou, Q., Liu, R.: Strategy optimization of resource scheduling based on cluster rendering. Clust. Comput. 19(4), 2109–2117 (2016)CrossRefGoogle Scholar
  39. 39.
    Zhou, Q., Luo, J.: The service quality evaluation of ecologic economy systems using simulation computing. Comput. Syst. Sci. Eng. 31(6), 453–460 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ningbo Institute of TechnologyZhejiang UniversityNingboChina
  2. 2.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations