Cluster Computing

, Volume 20, Issue 3, pp 2299–2310 | Cite as

Fast lightweight reconfiguration of virtual constellation for obtaining of earth observation big data

  • Lijun DongEmail author
  • Hong Yao
  • Rajiv Ranjan
  • Feng Zhang
  • Mengqi Pan


Earth observation (EO) big data is playing the increasingly important role in spatial sciences. To obtain adequate EO data, virtual constellation is proposed to overcome the limitation of traditional EO facilities, by combining the existing space and ground segment capabilities. However, the current configuration pattern of virtual constellation is tightly coupled with the specific application requirements. This leads to the costly reconfigurations. Although the pattern of software defined satellite network can decouple topology reconfigurations from application requirements, it cannot be directly applied to the reconfigurations of virtual constellations because of some drawbacks. To address the problem, we propose a model of LEO-ground links control-covering (LGLC) to implement fast and lightweight reconfiguration for virtual constellation. LGLC uses a bipartite graph model to formalize the dispatch problem of the control information of virtual constellation reconfiguration, and the optimum solution can be got by the classical algorithm in polynomial time. According to the strategy obtained, only if a few satellites and stations receive the control information, virtual constellation can be reconfigured quickly. We also establish some metrics to evaluate the effect of LGLC. Extensive experiments are conducted to confirm the above claims.


Earth observation big data Virtual constellation Software defined satellite network Network topology reconfiguration 


\(\mathcal {T}\)

The set of timeslots


The set of GEO satellites


The set of LEO satellites


The set of LEO satellite-footprints (\(U_L=V_L\times \mathcal {T}\))


The set of ground stations


The VCL consumption of satellite l covering m ground stations in timeslot t


The VCL consumption of station s covered by n LEO satellites in timeslot t


The burden rate of the controlling endpoint g on CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))


The burden rate of the controlled endpoint u on CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))


The global burden rate of controlling endpoints


The global burden rate of controlled endpoints


The burden rate of CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))


The global burden rate of CTLs


CTL fairness

\(v\vdash t\)

CTL fairness


The one-hop link between a LEO satellite and a ground station


The link between two LEO satellites


The link between two ground stations


The control link between a GEO satellite and a LEO satellite (or ground station)


Virtual covering link


Unifying time-varying graph


Time-varying graph




Immediate control-covering


Earth observation


The minimum weighted vertex cover



This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61672474) and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing (No. KLIGIP201611).


  1. 1.
    He, G., Wang, L., Ma, Y., Zhang, Z., Wang, G., Peng, Y., Long, T., Zhang, X.: Processing of earth observation big data: challenges and countermeasures. Chin. Sci. Bull. 60(5–6), 470–478 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Song, W., Liu, P.: Link the remote sensing big data to the image features via wavelet transformation. Clust. Comput. 19(2), 793–810 (2016)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Zhang, J., Liu, P., Choo, K.-K.R., Huang, F.: Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 21(1), 213–221 (2017)CrossRefGoogle Scholar
  4. 4.
    Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)CrossRefGoogle Scholar
  5. 5.
    Guo, H.-D., Zhang, L., Zhu, L.-W.: Earth observation big data for climate change research. Adv. Clim. Change Res. 6(2), 108–117 (2015)CrossRefGoogle Scholar
  6. 6.
    Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M., Ochiai, O.: Big data challenges in building the global earth observation system of systems. Environ. Model. Softw. 68, 1–26 (2015)CrossRefGoogle Scholar
  7. 7.
    CEOS: Ceos virtual constellations process paper, technical reports, Committee of Earth Observation Satellite (CEOS) (2006)Google Scholar
  8. 8.
    Wulder, M.A., Hilker, T., White, J.C., Coops, N.C., Masek, J.G., Pflugmacher, D., Crevier, Y.: Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Mahalec, V., Chen, Y., Liu, X., He, R., Sun, K.: Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. Eur. J. Oper. Res. 242(1), 10–20 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kong, Y., Zhang, M., Ye, D.: A belief propagation-based method for task allocation in open and dynamic cloud environments. Knowl.-Based Syst. 115, 123–132 (2017)Google Scholar
  11. 11.
    Dibarboure, G., Lambin, J.: Monitoring the ocean surface topography virtual constellation: lessons learned from the contribution of saral/altika. Mar. Geod. 38(sup1), 684–703 (2015)CrossRefGoogle Scholar
  12. 12.
    Lang, O., Weihing, D., Gressler, F., Fahrland, E., Schrader, H., Salow, D., Minguy, V., Oswald, M., Tinz, M.: Combined use of terrasar-x and radarsat-2 data-a study of a virtual constellation. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp. 3030–3033. IEEE (2012)Google Scholar
  13. 13.
    Yoder, J.A., Dowell, M., Hoepffner, N., Murakami, H., Stuart, V.: The ocean colour radiance virtual constellation (ocr-vc). Community White Paper for OceanObs 9, (2010)Google Scholar
  14. 14.
    Wang, L., Khan, S.U., Chen, D., KołOdziej, J., Ranjan, R., Xu, C.-Z., Zomaya, A.: Energy-aware parallel task scheduling in a cluster. Future Gener. Comput. Syst. 29(7), 1661–1670 (2013)Google Scholar
  15. 15.
    Liu, Q., Cai, W., Shen, J., Fu, Z., Liu, X., Linge, N.: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment. Secur. Commun. Netw. 9(17), 4002–4012 (2016)CrossRefGoogle Scholar
  16. 16.
    Gopal, R., Ravishankar, C.: Software defined satellite networks. In: 32 nd AIAA International Communications Satellite Systems Conference (ICSSC) (2014)Google Scholar
  17. 17.
    Tang, Z., Zhao, B., Yu, W., Feng, Z., Wu, C.: Software defined satellite networks: Benefits and challenges. In: Computing, Communications and IT Applications Conference (ComComAp), 2014 IEEE, pp. 127–132. IEEE (2014)Google Scholar
  18. 18.
    Yang, B., Wu, Y., Chu, X., Song, G.: Seamless handover in software-defined satellite networking. IEEE Commun. Lett. 20(9), 1768–1771 (2016)CrossRefGoogle Scholar
  19. 19.
    Zeng, D., Li, P., Guo, S., Miyazaki, T., Hu, J., Xiang, Y.: Energy minimization in multi-task software-defined sensor networks. IEEE Trans. Comput. 64(11), 3128–3139 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65, 3702–3712 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ferrús, R., Koumaras, H., Sallent, O., Agapiou, G., Rasheed, T., Kourtis, M.-A., Boustie, C., Gélard, P., Ahmed, T.: Sdn/nfv-enabled satellite communications networks: opportunities, scenarios and challenges. Phys. Commun. 18, 95–112 (2016)CrossRefGoogle Scholar
  22. 22.
    Ferrús Ferré, R.A., Sallent Roig, J.O., Rasheed, T., Morelli, A., Koumaras, H., Agapiou, G., Boustie, C., Gélard, P., Mestari, R., Makis, H., et al.: Enhancing satellite & terrestrial networks integration through nfv/sdn technologies. Multimedia Communications Technical Committee. IEEE Communications Society e-Letter, vol. 10, no. 4, pp. 17–21 (2015)Google Scholar
  23. 23.
    Ahmed, T., Dubois, E., Dupé, J.-B., Ferrús, R., Gélard, P., Kuhn, N.: Software-defined satellite cloud RAN. Int. J. Satell. Commun. Network. (2017). doi: 10.1002/sat.1206 Google Scholar
  24. 24.
    Bao, J., Zhao, B., Yu, W., Feng, Z., Wu, C., Gong, Z.: Opensan: a software-defined satellite network architecture. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 347–348. ACM (2014)Google Scholar
  25. 25.
    Bertaux, L., Medjiah, S., Berthou, P., Abdellatif, S., Hakiri, A., Gelard, P., Planchou, F., Bruyere, M.: Software defined networking and virtualization for broadband satellite networks. IEEE Commun. Mag. 53(3), 54–60 (2015)CrossRefGoogle Scholar
  26. 26.
    Zeng, D., Guo, S., Barnawi, A., Yu, S., Stojmenovic, I.: An improved stochastic modeling of opportunistic routing in vehicular cps. IEEE Trans. Comput. 64(7), 1819–1829 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wehmuth, K., Ziviani, A., Fleury, E.: A unifying model for representing time-varying graphs. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2015, 36678, pp. 1–10. IEEE (2015)Google Scholar
  28. 28.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  29. 29.
    Dantzig, G., Fulkerson, D.R.: On the max flow min cut theorem of networks. Linear Inequal. Relat. Syst. 38, 225–231 (2003)zbMATHGoogle Scholar
  30. 30.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM (JACM) 44(4), 585–591 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Computer ScienceChina University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Intelligent Geo-Information ProcessingChina University of GeosciencesWuhanChina

Personalised recommendations