Cluster Computing

, Volume 20, Issue 4, pp 2881–2890 | Cite as

Research on the parameter inversion problem of prestack seismic data based on improved differential evolution algorithm

  • Qinghua Wu
  • Zhixin Zhu
  • Xuesong YanEmail author


The parameter inversion technology composed by intelligent algorithm and AVO inversion for prestack seismic data provides a comparatively effective identification method for oil-gas exploration. However, traditionally intelligent iterative algorithm, such as, genetic algorithm, shows many disadvantages in solving this problem, including highly depending on initial model, fast convergence in algorithm and being easy to fall into local optimal. Therefore, an unsatisfied inversion performance is produced. In order to solve the above problems, this paper proposes a parameter inversion method based on improved differential evolution algorithm which is better in solving parameter inversion problems of prestack seismic data. In the proposed algorithm, aims at the Aki and Rechard approximation formula used specific initialization strategy, then the initialization parameter curve more smooth. Otherwise, the new algorithm has many advantages, such as, fast computing speed, simple operation, a low independence to initial model and good global convergence, this algorithm is the right choice in solving the parameter inversion problem based on pre-stack seismic data of real number encoding.


Differential evolution algorithm Prestack seismic data Parameter inversion initialization strategy 



This paper is supported by Natural Science Foundation of China. (Nos. 41404076, 61673354), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), and the State Key Laboratory of Intelligent Control and Decision of Complex Systems.


  1. 1.
    Neidell, N.S.: Amplitude variation with offset. Lead. Edge 5(3), 47–51 (1986)CrossRefGoogle Scholar
  2. 2.
    Li, S.: Study and Application About Inversion Method of Seismic Parameters of AVO. China University of Petroleum, Beijing (2009)Google Scholar
  3. 3.
    Chen, J.: AVO Three Parameter Inversion Method Research. China University of Petroleum, Beijing (2007)Google Scholar
  4. 4.
    Hongming, L.: Research on Quantum Genetic Algorithm and its Application in Geophysical Inversion. China University of Geosciences, Wuhan (2007)Google Scholar
  5. 5.
    Jiaying, W.: A lecture on nonlinear inversion of geophysical data (one): an overview of geophysical inversion problems. J. Eng. Geophys. 4(1), 1–3 (2007)CrossRefGoogle Scholar
  6. 6.
    Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (two)—Monte Carlo method. J. Eng. Geophys. 4(2), 81–85 (2007)Google Scholar
  7. 7.
    Xueming, S., Xueming, S., Jia Ying, W.: A lecture on nonlinear inversion method of geophysical data (three)—simulated annealing method. J. Eng. Geophys. 4(3), 165–174 (2007)Google Scholar
  8. 8.
    Xueming, S., Jia Ying, W.: A lecture on nonlinear inversion method of geophysical data (four)—genetic algorithm. J. Eng. Geophys. 5(2), 129–140 (2008)CrossRefGoogle Scholar
  9. 9.
    Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (five): artificial neural network inversion method. J. Eng. Geophys. 5(3), 255–265 (2008)Google Scholar
  10. 10.
    Peimin, Z., Jiaying, W.: A lecture on nonlinear inversion method of geophysical data (six)—conjugate gradient method. J. Eng. Geophys. 5(4), 381–386 (2008)Google Scholar
  11. 11.
    Shuming, W., Yulan, L., Jia Ying, W.: A lecture on the method of nonlinear inversion of geophysical data (nine)—ant colony algorithm. J. Eng. Geophys. 2, 131–136 (2009)Google Scholar
  12. 12.
    Yuanyuan, Y., Jiaying, W.: A lecture on nonlinear inversion of geophysical data (ten)—particle swarm inversion method. J. Eng. Geophys. 6(4), 385–389 (2009)Google Scholar
  13. 13.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report: TR-95-012, 1995Google Scholar
  14. 14.
    Aid, K., Richards, P.G.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980)Google Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach for Global Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  17. 17.
    Zielinski, K., Peters, D., Laur, R.: Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization. In: Proceedings of the 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization (2005)Google Scholar
  18. 18.
    Gong, W., Cai, Z.: Differential evolution with ranking-based mutation operators. IEEE Trans. Cybern. 43(6), 2066–2081 (2013)CrossRefGoogle Scholar
  19. 19.
    Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evolut. Comput. 18(5), 689–707 (2014)CrossRefGoogle Scholar
  20. 20.
    Lu, X., Tang, K., Sendhoff, B., et al.: A new self-adaptation scheme for differential evolution. Neurocomputing 146, 2–16 (2014)CrossRefGoogle Scholar
  21. 21.
    Gong, W., Cai, Z., Liang, D.: Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Trans. Cybern. 45(4), 716–727 (2015)CrossRefGoogle Scholar
  22. 22.
    Gong, W., Zhou, A., Cai, Z.: A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans. Evolut. Comput. 19(5), 746–758 (2015)CrossRefGoogle Scholar
  23. 23.
    Gong, W., Yan, X., Liu, X., et al.: Parameter extraction of different fuel cell models with transferred adaptive differential evolution. Energy 86, 139–151 (2015)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Zhang, Q., Zhou, A., et al.: Constrained sub problems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans. Evolut. Comput. 20(3), 475–480 (2016)CrossRefGoogle Scholar
  25. 25.
    Qiu, X., Xu, J.X., Tan, K.C., et al.: Adaptive cross-generation differential evolution operators for multiobjective optimization. IEEE Trans. Evolut. Comput. 20(2), 232–244 (2016)CrossRefGoogle Scholar
  26. 26.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  27. 27.
    Awad, N.H., Ali, M.Z., Suganthan, P.N., et al.: CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf. Sci. 378, 215–241 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)CrossRefGoogle Scholar
  29. 29.
    Bandyopadhyay, S., Mukherjee, A.: An algorithm for many-objective optimization with reduced objective computations: a study in differential evolution. IEEE Trans. Evolut. Comput. 19(3), 400–413 (2015)CrossRefGoogle Scholar
  30. 30.
    Guo, S.M., Yang, C.C.: Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans. Evolut. Comput. 19(1), 31–49 (2015)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Biswas, S., Kundu, S., Das, S.: Inducing niching behavior in differential evolution through local information sharing. IEEE Trans. Evolut. Comput. 19(2), 246–263 (2015)CrossRefGoogle Scholar
  32. 32.
    Li, Y.L., Zhan, Z.H., Gong, Y.J., et al.: Differential evolution with an evolution path: a DEEP evolutionary algorithm. IEEE Trans. Cybern. 45(9), 1798–1810 (2015)CrossRefGoogle Scholar
  33. 33.
    Guo, S.M., Yang, C.C., Hsu, P.H., et al.: Improving differential evolution with a successful-parent-selecting framework. IEEE Trans. Evolut. Comput. 19(5), 717–730 (2015)CrossRefGoogle Scholar
  34. 34.
    Yao, Y.X., Yao, K., Fanchang, Z., et al.: Prestack AVO inversion based on differential evolution algorithm. Pet. Geophys. Explor. 48(4), 591–596 (2013)Google Scholar
  35. 35.
    Brest, J., Greiner, S., Boskovic, B., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  36. 36.
    Wang, L.: Prestack AVO Nonlinear Inversion of Intelligent Optimization Algorithms. China University of Geosciences, Beijing (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Computer Science and EngineeringWuHan Institute of TechnologyWuhanChina
  2. 2.School of Computer ScienceChina University of GeosciencesWuhanChina

Personalised recommendations