Skip to main content

Advertisement

Log in

Energy-efficient and QoS-aware model based resource consolidation in cloud data centers

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

High energy consumption in data center has become a key problem, and the Carbon (CO\(_2\)) emissions from data center have serious impacts on environment. To improve traditional performance-energy model and minimize energy consumption in cloud data center, an energy-efficient and QoS-aware (EEQoS) model is developed for virtual resources consolidation. The EEQoS model is designed to investigate the trade-off between energy and QoS. The user’s satisfaction degree and Euclidean distance of resources are also respectively applied to the QoS model and power model. In addition, this EEQoS model is combined with the particle swarm optimization algorithm by setting the power consumption per QoS value as the objective function to consolidate virtual resources in data center. Compared with traditional power model, the proposed model reduces response time by 27.2%, cost by 31.4%, SLA violations by 40.5% and improves throughput by 13.5% on average while increasing less than 3.8% energy consumption during the whole test period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2013)

    Article  Google Scholar 

  2. Tian, W.H., Zhao, Y., Xu, M.X., Zhong, Y.L., Sun, X.S.: A toolkit for modeling and simulation of real-time virtual machine allocation in a cloud data center. IEEE Trans. Autom. Sci. Eng. 12(1), 153–161 (2015)

    Article  Google Scholar 

  3. Wei, L., Huang, T., Chen, J.: Workload prediction-based algorithm for consolidation of virtual machines. J. Electron. Inf. Technol. 35(6), 1271–1276 (2014)

    Article  Google Scholar 

  4. Rajyashree, R.V.: Double threshold based load balancing approach by using VM migration for the cloud computing environment. Int. J. Comput. Sci. Eng. 4(1), 9966–9970 (2015)

    Google Scholar 

  5. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application allocatement in virtualized systems. In: Middleware 08 Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, pp. 243–264 (2008)

  6. Li, H.J., Cui, C.Y., Tang, H., Dou, Y.S.: Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing. Computing 98(3), 303–317 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, X., Wang, J.M., Benasou, B.: Energy-efficient virtual machines scheduling in multi-tenant data centers. IEEE Trans. Cloud Comput. 4(2), 210–221 (2016)

    Article  Google Scholar 

  8. Greenberg, A., Hamilton, J., Maltz, J.A., Patel, P.: The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39, 68–73 (2008)

    Article  Google Scholar 

  9. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA 2007), pp. 13–23 (2007)

  10. Beloglazov, A., Abawajyb, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data center for cloud computing. Futur. Gener. Comput. Syst. 28(5), 755–768 (2012)

    Article  Google Scholar 

  11. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud computings. Concurr. Comput. 24(13), 1397–1420 (2012)

    Article  Google Scholar 

  12. Bobroff, N., Kochut, A., Beaty, K.: Dynamic allocatement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management, pp. 119–128. IEEE Computer Society Press, Munich (2007)

  13. Kusic, D., Kephart, J.O., Hanson, J.: Power and performance management of virtualized computing environments via look ahead control. Cluster Comput. 12(1), 1–15 (2009)

    Article  Google Scholar 

  14. Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International Computer Measurement Group Conference, pp. 399–406. CMG Press, San Diego (2007)

  15. Gupta, R., Bose, S.K., Sundarrajan, S.: A two stage heuristic algorithm for solving server consolidation problem with item-item and bin-item incompatibility constraints. In: Proceedings of the IEEE International Conference on Services Computing, pp. 39–46. IEEE Computer Society Press, Hawaii (2008)

  16. Gergo, L., Florian, N., Hermann, M.: Performance tradeoffs of energy-aware virtual machine consolidation. Cluster Comput. 16(13), 481–496 (2013)

    Google Scholar 

  17. Gandhi, A., Harchol-Balter, M., Das, R., et al.: Optimal power allocation in sever farms. In: Proceedings of the 11th International Joint Conference on Measurement and Modeling of Computer Systems, , pp. 157–168. ACM, New York (2009)

  18. Chen, G., He, W., Liu, J., et al.: Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: Proceedings of Symposium on Networked Systems Design and Implementation(NSDI), pp. 337–350. USENIX Association Berkeley (2008)

  19. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, reality for deliveringcomputing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  20. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, pp. 10. USENIX Association Berkeley (2008)

  21. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the IEEE Conference on Power Aware Computing and Systems, pp. 577–578. IEEE Computer Society Press, San Diego (2010)

  22. Ge, R., Feng, X., Wirtz, T., Zong, Z., Chen, Z.: eTune: a power analysis framework for data-intensive computing. In: Proceedings of the 41st International Conference on Parallel Processing Workshops, pp. 254–261(2012)

  23. Wirtz, T., Ge, R., Zong, Z., Chen, Z.: Power and energy characteristics of MapReduce data movements. In: Proceedings of the 2013 Green Computing Conference, pp. 1–7 (2013)

  24. Nguyen, Q., Pham, D., Nguyen, H., Nguyen, H., Nam, T.: A genetic algorithm for power-aware virtual machine allocation in private cloud. In: Proceedings of the 2013 International Conference on Information and Communication Technology, pp. 183–191. Springer, Berlin (2013)

  25. Agrawal, S., Bose, S.K., Sundarrajan, S.: Grouping genetic algorithm for solving the server consolidation with conflicts. In: Proceedings of the ACM/SIGEVO Summit Genetic and Evolutionary Computation, pp. 1–8. ACM Press, New York (2009)

  26. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)

  27. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 4104–4108. IEEE, Orlando (1997)

  28. Wirtz, T., Ge, R.: Improving mapreduce energy efficiency for computation intensive workloads. In: 2011 International Green Computing Conference and Workshop, pp. 1–8 (2011)

  29. Xu, Y., Xiao, R., et al.: An improved binary particle swarm optimizer. Pattern Recognit. Artif. Intell. 20(6), 788–793 (2007)

    Google Scholar 

  30. Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J., Harley, R.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  31. Zeng, N., Wang, Z., Zhang, H., Alsaadi, F.E.: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cognit. Comput. 8(2), 143–152 (2016)

    Article  Google Scholar 

  32. Xiong, A.P., Xu, C.X.: Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center. Math. Prob. Eng. (5), 1–8 (2014)

  33. Baliga, J., Hinton, K., Tucker, R.S.: Energy consumption of the Internet. In: Proceedings of the International Conference on the Optical Internet (COIN) with the 32nd Australian Conference on Optical Fibre Technology (ACOFT), pp. 1–3 (2007)

  34. Zhu, Y., Halpern, M., Reddi, V.J.: Event-based scheduling for energy-efficient QoS (eQoS) in mobile web applications. In: Proceedings of IEEE International Symposium on High Performance Computer Architecture, pp. 137–149 (2015)

  35. Ye, Z., Mistry, S., Bouguettaya, A., Dong, H.: Long-term QoS-aware cloud service composition using multivariate timeseries analysis. IEEE Trans. Serv. Comput. 9(3), 382–393 (2016)

    Article  Google Scholar 

  36. Sun, Y., White, J., Eade, S., Schmidt, D.C.: ROAR: a QoS-oriented modeling framework for automated cloud resource allocation and optimization. J. Syst. Softw. 116, 146–161 (2016)

    Article  Google Scholar 

  37. Kazem, A.A.P., Pedram, H., Abolhassani, H.: BNQM: a Bayesian network based QoS model for grid service composition. Expert. Syst. Appl. 42(20), 6828–6843 (2015)

    Article  Google Scholar 

  38. Siddiqui, M., Villazon, A., Fahringer, T.: Grid capacity planning with negotiation-based advance reservation for optimized QoS. In: Proceedings of the ACM/IEEE Supercomputing (SC 2006) Conf, pp. 103. ACM (2006)

  39. Chiang, Y., Ouyang, Y., Hsu, C.: An efficient green control algorithm in cloud computing for cost optimization. IEEE. Trans. Cloud. Comput. 3(2), 145–155 (2015)

    Article  Google Scholar 

  40. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 6167060383, 61650110513), China Postdoctoral Science (Grant No. 2016M600733) and Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (Project ID: R51A150Z10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjian Li or Wenhong Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, G., Zhao, Y. et al. Energy-efficient and QoS-aware model based resource consolidation in cloud data centers. Cluster Comput 20, 2793–2803 (2017). https://doi.org/10.1007/s10586-017-0893-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0893-5

Keywords

Navigation