Advertisement

Cluster Computing

, Volume 20, Issue 3, pp 1925–1936 | Cite as

Two level parallelism and I/O reduction in genome comparisons

  • Oscar TorrenoEmail author
  • Oswaldo Trelles
Article

Abstract

Genome comparison poses important computational challenges, especially in CPU-time, memory allocation and I/O operations. Although there already exist parallel approaches of multiple sequence comparisons algorithms, they face a significant limitation on the input sequence length. GECKO appeared as a computational and memory efficient method to overcome such limitation. However, its performance could be greatly increased by applying parallel strategies and I/O optimisations. We have applied two different strategies to accelerate GECKO while producing the same results. First, a two-level parallel approach parallelising each independent internal pairwise comparison in the first level, and the GECKO modules in the second level. A second approach consists on a complete rewrite of the original code to reduce I/O. Both strategies outperform the original code, which was already faster than equivalent software. Thus, much faster pairwise and multiple genome comparisons can be performed, what is really important with the ever-growing list of available genomes.

Keywords

Two-level parallelism Master–slave Balanced data splits I/O reduction Multiple genome comparison GECKO 

Notes

Acknowledgements

This work has been partially supported by the European projects Mr.Symbiomath (Grant No. 324554) and ELIXIR-EXCELERATE (Grant No. 676559), and the Spanish national projects “Plataforma de Recursos Biomoleculares y Bioinformáticos” (ISCIII-PT13.0001.0012) and RIRAAF (ISCIII-RD12/0013/0006).

References

  1. 1.
    Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley Professional, Boston (1997)Google Scholar
  2. 2.
    Caffarena, G., Pedreira, C., Carreras, C., Bojanic, S., Nieto-Taladriz, O.: FPGA acceleration for DNA sequence alignment. J. Circuits Syst. Comput. 16(02), 245–266 (2007)CrossRefGoogle Scholar
  3. 3.
    Cui, Y., Liao, X., Zhu, X., Wang, B., Peng, S.: mbwa: a massively parallel sequence reads aligner. In: 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014), pp. 113–120. Springer (2014)Google Scholar
  4. 4.
    Darling, A.E., Mau, B., Perna, N.T.: Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6), e11147 (2010)CrossRefGoogle Scholar
  5. 5.
    Duvigneau, R., Kloczko, T., Praveen, C.: A three-level parallelization strategy for robust design in aerodynamics. In: Proceedings of the 20th International Conference on Parallel Computational Fluid Dynamics, pp. 379–384 (2008)Google Scholar
  6. 6.
    Farrar, M.: Striped Smith–Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23(2), 156–161 (2007)CrossRefGoogle Scholar
  7. 7.
    Harris, R.: Improved pairwise alignment of genomic DNA. 2007. PhD diss., The Pennsylvania State University (2007)Google Scholar
  8. 8.
    Ino, F., Munekawa, Y., Hagihara, K.: Sequence homology search using fine grained cycle sharing of idle GPUs. IEEE Trans. Parallel Distrib. Syst. 23(4), 751–759 (2012)CrossRefGoogle Scholar
  9. 9.
    Kiełbasa, S.M., Wan, R., Sato, K., Horton, P., Frith, M.C.: Adaptive seeds tame genomic sequence comparison. Genome Res. 21(3), 487–493 (2011)CrossRefGoogle Scholar
  10. 10.
    Krishnajith, A.P., Kelly, W., Hayward, R., Tian, Y.C.: Managing memory and reducing i/o cost for correlation matrix calculation in bioinformatics. In: 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 36–43. IEEE (2013)Google Scholar
  11. 11.
    Krumsiek, J., Arnold, R., Rattei, T.: Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23(8), 1026–1028 (2007)CrossRefGoogle Scholar
  12. 12.
    Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome Biol. 5(2), R12 (2004)CrossRefGoogle Scholar
  13. 13.
    Lin, H., Balaji, P., Poole, R., Sosa, C., Ma, X., Feng, W.C.: Massively parallel genomic sequence search on the blue gene/p architecture. In: 2008 SC-International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE (2008)Google Scholar
  14. 14.
    Liu, Y., Schmidt, B.: SWAPHI: Smith–Waterman protein database search on Xeon Phi coprocessors. In: 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and Processors, pp. 184–185. IEEE (2014)Google Scholar
  15. 15.
    Liu, Y., Schmidt, B.: GSWABE: faster GPU-accelerated sequence alignment with optimal alignment retrieval for short DNA sequences. Concurr. Comput. Pract. Exp. 27(4), 958–972 (2015)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Tran, T.T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith–Waterman algorithm on Xeon Phi coprocessors for long DNA sequences. In: 2014 IEEE International Conference on Cluster Computing (CLUSTER), pp. 257–265. IEEE (2014)Google Scholar
  17. 17.
    Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith–Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14(1), 1 (2013)CrossRefGoogle Scholar
  18. 18.
    Maleki, S., Musuvathi, M., Mytkowicz, T.: Parallelizing dynamic programming through rank convergence. ACM SIGPLAN Not. 49(8), 219–232 (2014)CrossRefGoogle Scholar
  19. 19.
    Meng, X., Chaudhary, V.: A high-performance heterogeneous computing platform for biological sequence analysis. IEEE Trans. Parallel Distrib. Syst. 21(9), 1267–1280 (2010)CrossRefGoogle Scholar
  20. 20.
    Momcilovic, S., Roma, N., Sousa, L.: Multi-level parallelization of advanced video coding on hybrid cpu+ gpu platforms. In: Euro-Par 2012: Parallel Processing Workshops, pp. 165–174. Springer (2012)Google Scholar
  21. 21.
    NCBI: National center for biotechnology information (2016). http://www.ncbi.nlm.nih.gov/. Accessed 21 Nov 2016
  22. 22.
    PD Krishnajith, A., Kelly, W., Tian, Y.C.: Optimizing i/o cost and managing memory for composition vector method based on correlation matrix calculation in bioinformatics. Curr. Bioinform. 9(3), 234–245 (2014)CrossRefGoogle Scholar
  23. 23.
    Rognes, T.: Faster Smith–Waterman database searches with inter-sequence SIMD parallelisation. BMC Bioinform. 12(1), 1 (2011)CrossRefGoogle Scholar
  24. 24.
    Rucci, E., De Giusti, A., Naiouf, M., Botella, G., García, C., Prieto-Matias, M.: Smith–Waterman algorithm on heterogeneous systems: A case study. In: 2014 IEEE International Conference on Cluster Computing (CLUSTER), pp. 323–330. IEEE (2014)Google Scholar
  25. 25.
    Sandes, E.F.D.O., Boukerche, A., Melo, A.C.M.A.D.: Parallel optimal pairwise biological sequence comparison: algorithms, platforms, and classification. ACM Comput. Surv. (CSUR) 48(4), 63 (2016)CrossRefGoogle Scholar
  26. 26.
    Sandes, E.F.D.O., de Melo, A.C.M.: Retrieving Smith–Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans. Parallel Distrib. Syst. 24(5), 1009–1021 (2013)CrossRefGoogle Scholar
  27. 27.
    Sarkar, S., Kulkarni, G.R., Pande, P.P., Kalyanaraman, A.: Network-on-chip hardware accelerators for biological sequence alignment. IEEE Trans. Comput. 59(1), 29–41 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Supercomputing Center, U.o.M.: Picasso supercomputer (2016). http://www.scbi.uma.es/site/scbi/hardware. Accessed 21 Nov 2016
  29. 29.
    The Open MPI Project: Open MPI. https://www.open-mpi.org/. Accessed 21 Nov 2016
  30. 30.
    The Regents of the University of California: Jgi gold | statistics (2016). https://gold.jgi.doe.gov/statistics. Accessed 21 Nov 2016
  31. 31.
    Torreno, O., Trelles, O.: GECKO Supplementary material. http://bitlab-es.com/gecko/documents/HSPWorkflow-SuppMat-submittedv2.pdf. Accessed 21 Nov 2016
  32. 32.
    Torreno, O., Trelles, O.: Breaking the computational barriers of pairwise genome comparison. BMC Bioinform. 16(1), 1 (2015)CrossRefGoogle Scholar
  33. 33.
    Torreno, O., Trelles, O.: Two-level parallelism to accelerate multiple genome comparisons. In: 2016 22nd International Conference on Parallel and Distributed Computing (Euro-Par). Springer (2016)Google Scholar
  34. 34.
    Wang, L., Chan, Y., Duan, X., Lan, H., Meng, X., Liu, W.: XSW: Accelerating biological database search on xeon phi. In: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW), pp. 950–957. IEEE (2014)Google Scholar
  35. 35.
    Wienbrandt, L.: Bioinformatics applications on the FPGA-based high-performance computer RIVYERA. In: High-Performance Computing Using FPGAs, pp. 81–103. Springer (2013)Google Scholar
  36. 36.
    Zhou, Y., Xu, W., Donald, B.R., Zeng, J.: An efficient parallel algorithm for accelerating computational protein design. Bioinformatics 30(12), i255–i263 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Computer Architecture DepartmentUniversity of MálagaMálagaSpain

Personalised recommendations