A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology

Abstract

Metaheuristics are gaining increasing recognition in many research areas, computational systems biology among them. Recent advances in metaheuristics can be helpful in locating the vicinity of the global solution in reasonable computation times, with Differential Evolution (DE) being one of the most popular methods. However, for most realistic applications, DE still requires excessive computation times. With the advent of Cloud Computing effortless access to large number of distributed resources has become more feasible, and new distributed frameworks, like Spark, have been developed to deal with large scale computations on commodity clusters and cloud resources. In this paper we propose a parallel implementation of an enhanced DE using Spark. The proposal drastically reduces the execution time, by means of including a selected local search and exploiting the available distributed resources. The performance of the proposal has been thoroughly assessed using challenging parameter estimation problems from the domain of computational systems biology. Two different platforms have been used for the evaluation, a local cluster and the Microsoft Azure public cloud. Additionally, it has been also compared with other parallel approaches, another cloud-based solution (a MapReduce implementation) and a traditional HPC solution (a MPI implementation)

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

    Article  MATH  Google Scholar 

  2. 2.

    Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., Jirstrand, M.: Kinetic models in industrial biotechnology - Improving cell factory performance. Metab. Eng. pp. 1–22 (2014)

  3. 3.

    Apolloni, J., García-Nieto, J., Alba, E., Leguizamón, G.: Empirical evaluation of distributed differential evolution on standard benchmarks. Appl. Math. Comput. 236, 351–366 (2014)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.G.: Systems biology: parameter estimation for biochemical models. Febs J. 276(4), 886–902 (2009)

    Article  Google Scholar 

  5. 5.

    Banga, J., Balsa-Canto, E.: Parameter estimation and optimal experimental design. Essays Biochem. 45, 195–210 (2008)

    Article  Google Scholar 

  6. 6.

    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  7. 7.

    Cedersund, G., Samuelsson, O., Ball, G., Tegnér, J., Gomez-Cabrero, D.: Uncertainty in biology: a computational modeling approach. In: Geris, L., Gomez-Cabrero, D. (eds.) Optimization in Biology Parameter Estimation and the Associated Optimization Problem, pp. 177–197. Springer International Publishing, Cham (2016)

    Google Scholar 

  8. 8.

    Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel differential evolution clustering algorithm based on MapReduce. In: 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp. 337–341 (2014)

  9. 9.

    Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  10. 10.

    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  11. 11.

    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: The 6th USENIX Symposium on Operating Systems Design and Implementation (2004)

  12. 12.

    Deng, C., Tan, X., Dong, X., Tan, Y.: A parallel version of differential evolution based on resilient distributed datasets model. In: Gong, M., Pan, L., Song, T., Tang, K., Zhang, X. (eds.) Bio-Inspired Computing-Theories and Applications, pp. 84–93. Springer, Berlin (2015)

    Google Scholar 

  13. 13.

    Dennis Jr., J.E., Gay, D.M., Welsch, R.E.: Algorithm 573: Nl2sol - an adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. 7(3), 369–383 (1981)

    Article  Google Scholar 

  14. 14.

    Egea, J.A., Rodríguez-Fernández, M., Banga, J.R., Martí, R.: Scatter search for chemical and bio-process optimization. J. Global Optim. 37(3), 481–503 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data flows. CoRR abs/1208.0088 (2012). http://arxiv.org/abs/1208.0088

  16. 16.

    Gábor, A., Banga, J.R.: Robust and efficient parameter estimation in dynamic models of biological systems. BMC Syst. Biol. 9(1), 74 (2015)

    Article  Google Scholar 

  17. 17.

    Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs, J.M., Bolival, B., Assad-Garcia, N., Glass, J.I., Covert, M.W.: A whole-cell computational model predicts phenotype from genotype. Cell 150(2), 389–401 (2012)

    Article  Google Scholar 

  18. 18.

    Kushida, J.I., Oba, K., Hara, A., Takahama, T.: Solving quadratic assignment problems by differential evolution. In: 6th International Conference on Soft Computing and Intelligent Systems, and 13th International Symposium on Advanced Intelligence Systems, SCIS/ISIS 2012, pp. 639–644 (2012)

  19. 19.

    Le Novère, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)

    Article  Google Scholar 

  20. 20.

    Link, H., Christodoulou, D., Sauer, U.: Advancing metabolic models with kinetic information. Current Opin. Biotechnol. 29, 8–14 (2014)

    Article  Google Scholar 

  21. 21.

    Lipniacki, T., Paszek, P., Brasier, A., Luxon, B., Kimmel, M.: Mathematical model of nf-\(\kappa \)b regulatory module. J. Theor. Biol. 228(2), 195–215 (2004)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and varied experimental data: the circadian clock in arabidopsis thaliana. J. Theor. Biol. 234(3), 383–393 (2005)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Moles, C., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Gen. Res. 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  24. 24.

    Neri, F., Tirronen, V., Kärkkäinen, T.: Enhancing differential evolution frameworks by scale factor local search - part ii. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 118–125 (2009)

  25. 25.

    Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: GECCO 2005 - Genetic and Evolutionary Computation Conference, pp. 967–974 (2005)

  26. 26.

    Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–125 (2008)

    Article  Google Scholar 

  27. 27.

    Ntipteni, M.S., Valakos, I.M., Nikolos, I.K.: An asynchronous parallel differential evolution algorithm. In: Proceedings of the ERCOFTAC conference on design optimisation: methods and application (2006)

  28. 28.

    Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel differential evolution algorithm for problems in computational systems biology. Appl. Soft Comput. 33, 86–99 (2015). http://dx.doi.org/10.1016/j.asoc.2015.04.025. http://www.sciencedirect.com/science/article/pii/S1568494615002525

  29. 29.

    Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island model. Parallel Comput. 36(10–11), 555–571 (2010)

    Article  MATH  Google Scholar 

  30. 30.

    Schneider, E., Krohling, R.A.: Differential evolution and tabu search to find multiple solutions of multimodal optimization problems. In: Snasel, V., Kromer, P., Koppen, M., Schaefer, G. (eds.) Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing, vol. 223, pp. 61–69. Springer International Publishing, Berlin (2014)

    Google Scholar 

  31. 31.

    Smallbone, K., Mendes, P.: Large-scale metabolic models: from reconstruction to differential equations. Ind. Biotechnol. 9(4), 179–184 (2013)

    Article  Google Scholar 

  32. 32.

    Srinivas, M., Rangaiah, G.: Differential evolution with tabu list for global optimization and its application to phase equilibrium and parameter estimation problems. Ind. Eng. Chem. Res. 46(10), 3410–3421 (2007)

    Article  Google Scholar 

  33. 33.

    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 185–202 (2012)

    Article  Google Scholar 

  35. 35.

    Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce. Int. J. Comput. 4(4), 161–168 (2010)

    Google Scholar 

  36. 36.

    Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: IEEE Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 2023–2029. IEEE (2004)

  37. 37.

    Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing parallel differential evolution on Spark. In: Applications of Evolutionary Computation. Lecture Notes in Computer Science, Vol. 9598, pp. 75–90. Springer (2016)

  38. 38.

    Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Towards cloud-based parallel metaheuristics: a case study in computational biology with differential evolution and spark. Int. J. High Perform. Comput. Appl. (2016)

  39. 39.

    Teijeiro, D., Pardo, X.C., Penas, D.R., González, P., Banga, J.R., Doallo, R.: Evaluation of parallel differential evolution implementations on MapReduce and Spark. In: Lecture Notes in Computer Science, in press. Springer (2016)

  40. 40.

    Tirronen, V., Neri, F., Rossi, T.: Enhancing differential evolution frameworks by scale factor local search - part i. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 94–101 (2009)

  41. 41.

    Crepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013)

    MATH  Google Scholar 

  42. 42.

    Villaverde, A., Banga, J.R.: Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J. R Soc. Interface 11(91), 20130505 (2014)

    Article  Google Scholar 

  43. 43.

    Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput. 15(11), 2089–2107 (2011)

    Article  Google Scholar 

  44. 44.

    Weber, M., Neri, F., Tirronen, V.: A study on scale factor/crossover interaction in distributed differential evolution. Artif. Intell. Rev. 39(3), 195–224 (2013)

    Article  Google Scholar 

  45. 45.

    Weihmann, L., Martins, D., dos Santos Coelho, L.: Modified differential evolution approach for optimization of planar parallel manipulators force capabilities. Expert Syst. Appl. 39(6), 6150–6156 (2012)

    Article  Google Scholar 

  46. 46.

    Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: The 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012 (2012)

  47. 47.

    Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization. Soft Comput. 15(11), 2175–2185 (2011)

    Article  Google Scholar 

  48. 48.

    Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1113–1114. ACM (2010)

Download references

Acknowledgements

This research received financial support from the Spanish Government (and the FEDER) through the projects DPI2014-55276-C5-2-R, TIN2013-42148-P and TIN2016-75845-P, and from the Galician Government under the Consolidation Program of Competitive Research Units (Network Ref. R2016/045 and Project Ref. GRC2013/055), all of them cofunded by FEDER funds of the EU. We also acknowledge Microsoft Research for being awarded with a sponsored Azure account.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patricia González.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teijeiro, D., Pardo, X.C., Penas, D.R. et al. A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology. Cluster Comput 20, 1937–1950 (2017). https://doi.org/10.1007/s10586-017-0860-1

Download citation

Keywords

  • Parallel metaheuristics
  • Differential evolution
  • Local search
  • Cloud computing
  • Spark