Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A nanocommunication system for endocrine diseases

  • 247 Accesses

Abstract

Nanotechnology is a new and very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Akyildiz, I.F.: Nanonetworks—a new frontier in communications. In: Proceedings of the 2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP), pp. IS-5–IS-5, 26–28 July 2010

  2. 2.

    Badjic, J.D., Balzani, V., Credi, A., Silvi, S., Stoddar, J.F.: A molecular elevator. Science 303, 1845–1849 (2004)

  3. 3.

    Akyildiz, I.F., Brunetti, F., Blázquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw. 52(12), 22 (2008)

  4. 4.

    Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., Nakano, T.: Molecular communication. In: Proceedings of NSTI Nanotech 2005, Anaheim, California, USA

  5. 5.

    Akyildiz, I.F., Fekri, F., Sivakumar, R., Forest, C.R., Hammer, B.K.: Monaco: fundamentals of molecular nano-communication networks. Wirel. Commun. 19(5), 12–18 (2012)

  6. 6.

    Parcerisa Giné, L., Akyildiz, I.F.: Molecular communication options for long range nanonetworks. Comput. Netw. 53(16), 2753–2766 (2009)

  7. 7.

    Atakan, B., Akan, O.B.: An information theoretical approach for molecular communication. In: Bio-inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007, vol. 2, pp. 33, 40, 10–12 December 2007

  8. 8.

    Atakan, B., Galmes, S., Akan, O.B.: Nanoscale communication with molecular arrays in nanonetworks. IEEE Trans. NanoBiosci. 11(2), 149–160 (2012)

  9. 9.

    Akyildiz, I.E., Jornet, J.M.: The Internet of nano-things. IEEE Wirel. Commun. 17(6), 58–63 (2010)

  10. 10.

    Agoulmine, N., Kim, K., Kim, S., Rim, T., Lee, J.-S., Meyyappan, M.: Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wirel Commun 19(5), 42–51 (2012)

  11. 11.

    Chahibi, Y., Pierobon, M., Song, S.O., Akyildiz, I.F.: A molecular communication system model for particulate drug delivery systems. IEEE Trans. Biomed. Eng. 60, 3468–3483 (2013)

  12. 12.

    Cavalcanti, A., Shirinzadeh, B., Freitas, R.A.: Nanorobot architecture for medical target identification. Nanotechnology 19, 015103 (2008)

  13. 13.

    Kuran, M.S.; Yilmaz, H.B.; Tugcu, T.: Effects of routing for communication via diffusion system in the multi-node environment. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 461, 466, 10–15 April 2011

  14. 14.

    Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., Arima, K.: Molecular communication for nanomachines using intercellular calcium signaling. In: 5th IEEE Conference on Nanotechnology, vol. 2 pp. 478, 481, 11–15 July 2005

  15. 15.

    Moore, M., Enomoto, A., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K.: A design of a molecular communication system for nanomachines using molecular motors. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’06) (2006)

  16. 16.

    Moore, M.J., Enomoto, A., Watanabe, S., Oiwa, K., Suda, T.: Simulating molecular motor uni-cast information rate for molecular communication. In: 43rd Annual Conference on Information Sciences and Systems, 2009. CISS 2009, pp. 859, 864, 18–20 March 2009

  17. 17.

    Lio’, P., Balasubramaniam, S.: Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Commun. Netw. 3(1), 36–45 (2012)

  18. 18.

    Frost, L.S., Koraimann, G.: Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol. 5(7), 1057–1071 (2010)

  19. 19.

    Piro, G., Grieco, L.A., Boggia, G., Camarda, P.: Nano-Sim: simulating electromagnetic-based nanonetworks in the network simulator 3. In: Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques (SimuTools ’13) (2013)

  20. 20.

    Llatser, I., Pascual, I., Garralda, N., Cabellos-Aparicio, A., Alarcon, E.: N3sim: a simulation framework for diffusion-based molecular communication. In: IEEE Technical Committee on Simulation (2011)

  21. 21.

    Gul, E., Atakan, B., Akan, O.B.: NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun. Netw. 1(2), 138–156 (2010)

  22. 22.

    Felicetti, L., Femminella, M., Reali, G.: A simulation tool for biological nano-communication systems. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL’11), ACM, New York, NY, USA, Article 23 (2011)

  23. 23.

    Várkonyi, P.L., Domokos, G.: Static equilibria of rigid bodies: dice, pebbles and the Poincare-Hopf Theorem. J. Nonlinear Sci. 16, 255–281 (2006)

  24. 24.

    Várkonyi, P.L., Domokos, G.: Mono-monostatic bodies: the answer to Arnold’s question. Math. Intell. 28(4), 34–38 (2006)

  25. 25.

    Hiyama, S., Isogawa, Y., Suda, T., Moritani, Y., Sutoh, K.: A design of an autonomous molecule loading/transporting/unloading system using DNA hybridization and biomolecular linear motors. In: European Nano Systems, Paris, France, pp. 75–80 (2005)

  26. 26.

    Cobo-Rus, L.C., Akyildiz, I.E.: Bacteria-based communication in nanonetworks. Nano Commun. Netw. 1(4), 244–256 (2010)

  27. 27.

    Finan, T.M., Weidner, S., Wong, K., Buhrmester, J., Chain, P., Vorhölter, E.J., Hernandez-Lucas, I., Becker, A., Cowie, A., Gouzy, J., Golding, B., Pühler, A.: The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA 98(17), 9889–9894 (2001)

  28. 28.

    Balasubramaniam, S., Lio’, P.: Multi-hop conjugation based bacteria nanonetworks. IEEE Trans. NanoBioscience 12(1), 47–59 (2013)

  29. 29.

    Moritani, Y., Hiyama, S., Suda, T.: Molecular communication for health care applications. In: Proceedings of IEEE PERCOMW 2006, Italy (2006)

  30. 30.

    Hoy, C., Beecroft, C.: The patient with endocrine disease. Surgery (Oxford) 31(8), 404–409 (2013)

  31. 31.

    Atakan, B., Akan, O.B.: On channel capacity and error compensation in molecular communication. Transaction on Computational System Biology. Springer, Berlin (2008)

Download references

Author information

Correspondence to Diogo Caldeira Ferreira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D.C., Reis, L.P. & Lopes, N.V. A nanocommunication system for endocrine diseases. Cluster Comput 20, 689–706 (2017). https://doi.org/10.1007/s10586-017-0761-3

Download citation

Keywords

  • Molecular
  • Nanocommunication
  • Nanonetwork
  • Nanomedicine
  • Addressing
  • Routing