Skip to main content
Log in

Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013). doi:10.1111/j.1475-3995.2012.00862.x

    Article  MATH  Google Scholar 

  2. Carretero, J., Garcia-Blas, J., Singh, D.E., Isaila, F., Fahringer, T., Prodan, R., Bosilca, G., Lastovetsky, A., Symeonidou, C., Perez-Sanchez, H., et al.: Optimizations to enhance sustainability of mpi applications. In: Proceedings of the 21st European MPI Users’ Group Meeting, p. 145. ACM (2014)

  3. Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A., Amos, M.: Parallelization strategies for ant colony optimisation on GPUs. In: Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing, pp. 339–346. IEEE (2011)

  4. Cecilia, J.M., Garcia, J.M., Nisbet, A., Amos, M., Ujaldón, M.: Enhancing data parallelism for ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

    Article  Google Scholar 

  5. Cecilia, J.M., Nisbet, A., Amos, M., Garcia, J.M., Ujaldón, M.: Enhancing GPU parallelism in nature-inspired algorithms. J. Supercomput. 63(3), 773–789 (2013)

    Article  Google Scholar 

  6. Chang, R.S.S., Chang, J.S.S., Lin, P.S.S.: An ant algorithm for balanced job scheduling in grids. Future Gener. Comput. Syst. 25(1), 20–27 (2009). doi:10.1016/j.future.2008.06.004

    Article  Google Scholar 

  7. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature selection based on ant colony optimization. Pattern Recognit. Lett. 31(3), 226–233 (2010). doi:10.1016/j.patrec.2009.10.013

    Article  Google Scholar 

  8. De Michell, G., Gupta, R.K.: Hardware/software co-design. Proc. IEEE 85(3), 349–365 (1997)

    Article  Google Scholar 

  9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73, 52–61 (2013). doi:10.1016/j.jpdc.2012.01.003

    Article  Google Scholar 

  10. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pp. 1470–1477. IEEE Press (1999)

  11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

  12. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. B 26(1), 29–41 (1996)

    Article  Google Scholar 

  13. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. B 26, 29–41 (1996)

    Article  Google Scholar 

  14. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  15. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)

    Book  MATH  Google Scholar 

  16. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. Handbook of Metaheuristics, pp. 227–263. Springer, Berlin (2010)

    Chapter  Google Scholar 

  17. Garcia, M.P., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9(3), 1102–1110 (2009). doi:10.1016/j.asoc.2009.02.014

    Article  Google Scholar 

  18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, New York (1989)

    MATH  Google Scholar 

  19. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston (1989)

    MATH  Google Scholar 

  20. González, R., Horowitz, M.: Energy dissipation in general purpose microprocessors. IEEE J. Solid-State Circuits 31(9), 1277–1284 (1996)

    Article  Google Scholar 

  21. Johnson, D.S., Mcgeoch, L.A.: The Traveling Salesman Problem: A Case Study in Local Optimization. Wiley, New York (1997)

    MATH  Google Scholar 

  22. Ke, B.R., Chen, M.C., Lin, C.L.: Block-layout design using max-min ant system for saving energy on mass rapid transit systems. IEEE Trans. Intell. Transp. Syst. 10(2), 226–235 (2009). doi:10.1109/TITS.2009.2018324

    Article  Google Scholar 

  23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

  24. Komarudin, Wong, K.Y.: Applying ant system for solving unequal area facility layout problems. Eur. J. Oper. Res. 202(3), 730–746 (2010). doi:10.1016/j.ejor.2009.06.016

    Article  MATH  Google Scholar 

  25. Krueger, J., Donofrio, D., Shalf, J., Mohiyuddin, M., Williams, S., Oliker, L., Pfreund, F.J.: Hardware/software co-design for energy-efficient seismic modeling. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p. 73. ACM (2011)

  26. Lawler, E., Lenstra, J., Kan, A., Shmoys, D.: The Traveling Salesman Problem. Wiley, New York (1987)

    MATH  Google Scholar 

  27. Manfrin, M., Manfrin, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. Ant Colony Optimization and Swarm Intelligence, pp. 224–234. Springer, Berlin (2006)

    Chapter  Google Scholar 

  28. Martin, A.: Towards an energy complexity of computations. Inf. Process. Lett. 77, 181–187 (2001)

    Article  MATH  Google Scholar 

  29. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  30. Nvidia Corporation. NVML API Reference ([last accesed 15 November 2014]). http://developer.download.Nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf

  31. NVIDIA: NVIDIA CUDA C Programming Guide 6.5 (2014)

  32. Parallel forall blog. Nvidia CUDA Zone. http://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/ [11 March 2015]

  33. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony optimization. Appl. Soft Comput. 11(8), 5181–5197 (2011). doi:10.1016/j.asoc.2011.05.042

    Article  Google Scholar 

  34. Pénzes, P., Martin, A.: Energy-delay efficiency of vlsi computations. In: Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI). IEEE (2002)

  35. Rahman, R.: Xeon phi system software. Intel \({\textregistered }\) Xeon Phi Coprocessor Architecture and Tools, pp. 97–112. Springer, Berlin (2013)

    Chapter  Google Scholar 

  36. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Computing. Springer, Berlin (2011)

    MATH  Google Scholar 

  38. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software codesign for exascale systems. Computer 44(11), 22–30 (2011)

    Article  Google Scholar 

  39. Stützle, T.: Parallelization strategies for ant colony optimization. In: PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, pp. 722–731. Springer, London (1998)

  40. Stützle, T.: Parallelization strategies for ant colony optimization. Parallel Problem Solving from Nature (PPSN V), pp. 722–731. Springer, Berlin (1998)

    Chapter  Google Scholar 

  41. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  MATH  Google Scholar 

  42. Top 500 supercomputer site ([last accesed 15 November 2014]). http://www.top500.org/

  43. TSPLIB Webpage (2011). http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

  44. Wolf, W.: A decade of hardware/software codesign. Computer 36(4), 38–43 (2003)

    Article  Google Scholar 

  45. Yu, B., Yang, Z.Z., Yao, B.: An improved ant colony optimization for vehicle routing problem. Eur. J. Oper. Res. 196(1), 171–176 (2009). doi:10.1016/j.ejor.2008.02.028

    Article  MATH  Google Scholar 

  46. Zhu, W., Curry, J.: Parallel ant colony for nonlinear function optimization with graphics hardware acceleration. In: IEEE International Conference on Systems, Man and Cybernetics, SMC, pp. 1803–1808. IEEE (2009)

Download references

Acknowledgments

This work is jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under Grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC under grants TIN2012-31345 and TIN2013-42253-P, by the Nils Coordinated Mobility under Grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF), and by the Junta de Andalucía under Project of Excellence P12-TIC-1741. We also thank Nvidia for hardware donations within UCAM and UMA CUDA Teaching and Research Centers awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ujaldón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llanes, A., Cecilia, J.M., Sánchez, A. et al. Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Comput 19, 1–11 (2016). https://doi.org/10.1007/s10586-016-0534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0534-4

Keywords

Navigation