A grid based simulation environment for agent-based models with vast parameter spaces

Abstract

Agent-based simulation models with large experiments for a precise and robust result over a vast parameter space are becoming a common practice, where enormous runs intrinsically require highly intensive computational resources. This paper proposes a grid based simulation environment, named Social Macro Scope (SOMAS) to support parallel exploration on agent-based models with vast parameter space. We focus on three types of simulation methods for agent-based models with various objectives (1) forward simulation to conduct experiments in a straightforward way by simply operating sets of parameter values to perform sensitivity analysis; (2) inverse simulation to search for solutions that reduce the error between simulated results and actual data by means of solving “inverse problem”, which executes the simulation steps in a reverse order and employs optimization algorithms to fit the simulation results to the desired objectives; and (3) model selection to find an optimal model structure with subset of parameters and procedures, which conducts two-layer optimization to obtain a simple and more accurate simulation result. We have confirmed the practical scalability and efficiency of SOMAS by one case study in history simulation domain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Takadama, K., Cioffi-Revilla, C., Deffuant, G.: Simulating Interacting Agents and Social Phenomena. Springer, New York (2010)

    Book  Google Scholar 

  2. 2.

    Chen, S.-H., Terano, T., Yamamoto, R., Tai, C.C.: Advances in Computational Social Science. Springer, New York (2014)

    Book  Google Scholar 

  3. 3.

    Gilbert, N.: Agent-Based Models. Thousand Oaks, Sage Publications (2007)

    Google Scholar 

  4. 4.

    van Dam, K.H., Nikolic, I., Lukszo, Z.: Agent-Based Modelling of Socio-Technical Systems. Springer, New York (2013)

    Book  Google Scholar 

  5. 5.

    Nakai, Y., Koyama, Y., Terano, T.: Agent-Based Approaches in Economic and Social Complex Systems VIII. Springer, New York (2015)

    Book  Google Scholar 

  6. 6.

    Terano, T.: Exploring the vast parameter space of multi-agent based simulation. In: Antunes L., Takadama K. (eds.) Proceedings of the Seventh International Workshop on Multi-Agent-Based Simulation (MABS’06), LNAI 4442, Springer, pp. 1–14 (2007)

  7. 7.

    Yang, C., Kurahashi, S., Kurahashi, K., Ono, I., Terano, T.: Agent-based simulation on womens role in a family line on civil service examination in Chinese history. J. Artif. Soc. Soc. Simul. 12(25) (2009). http://jasss.soc.surrey.ac.uk/12/2/5.html

  8. 8.

    Yang, C., Kurahashi, S., Kurahashi, K., Ono, I., Terano, T.: Pattern-oriented inverse simulation for analyzing social problems: family strategies in civil service examination in imperial China. Adv. Complex Syst. 15(7), 1250038 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hou, B.N., Yao, Y.P., Wang, B.: Modeling and simulation of large-scale social networks using parallel discrete event simulation. Simulation 89(10), 1173–1183 (2013)

    Article  Google Scholar 

  10. 10.

    Chen, D., Theodoropoulos, K.G., Turner, T.S., Cai, W.T., Minson, R., Zhang, Y.: Large scale agent-based simulation on the grid. Future Gener. Comput. Syst. 24(7), 658–671 (2008)

    Article  Google Scholar 

  11. 11.

    Blanchart, E., Cambier, C., Canape, C., et al.: EPIS: a grid platform to ease and optimize multi-agent simulators running. In: Demazeau, Y., Pechoucek, M., Corchado, JM., Bajo, J. (eds.) The 9th international conference on practical applications of agents and multi-agent systems, advances on practical applications of agents and multi-agent systems, pp. 129–134, Salamanca, Spain (2011)

  12. 12.

    Yamamoto, G., Mizuta, H., Tai, H.: A platform for massive agent-based simulation and its evaluation. In: The first international workshop on coordination and control in massively multi-agent systems (2007)

  13. 13.

    Pignotti, J.G., et al.: A semantic grid service for experimentation with an agent-based model of land-use change. J. Artif. Soc. Soc. Simul. 10(2), 2 (2007)

    Google Scholar 

  14. 14.

    Pignotti, E., et al.: A semantic workflow mechanism to realise experimental goals and constraints. In: Proceedings of the 3rd workshop on workflows in support of large-scale science, Works-08, Austin, Texas (2008)

  15. 15.

    MEME. http://modelexploration.aitia.ai/ (2014)

  16. 16.

    Imade, H., Morishita, R., Ono, I., Ono, N.: A grid-oriented genetic algorithm framework for bioinformatics. New Gener. Comput. 22(2), 177–186 (2004)

    Article  MATH  Google Scholar 

  17. 17.

    Ono, I.: Grid-oriented genetic algorithms for large-scale optimization. J. Soc. Instrum. Control Eng. 47(6), 473–479 (2008)

    Google Scholar 

  18. 18.

    Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Confl. Resolut. 41(2), 203–226 (1997)

    Article  Google Scholar 

  19. 19.

    Axelrod, R.: The Complexity of Cooperation. Princeton University, New Jersey (1999)

    Google Scholar 

  20. 20.

    Deffuant, G., Amblard, F., Weisbuch, G., Faure, T.: How can extremism prevail? A study based on the relative agreement interaction model. J. Artif. Soc. Soc. Simul. 5(4) (2002)

  21. 21.

    Huet, S., Edwards, M., Deffuant, G.: Taking into account the variations of neighbourhood sizes in the mean-field approximation of the threshold model on a random network. J. Artif. Soc. Soc. Simul. 10(1) (2007). http://jasss.soc.surrey.ac.uk/10/1/10/10.pdf

  22. 22.

    Kurahashi, S., Minami U., Terano, T.: Why not multiple solutions: agent-based social interaction analysis via inverse simulation. In: IEEE International Conference on System, Man, and Cybernetics, (SMC99), 2048 (1999)

  23. 23.

    Terano, T., Kurahashi, S. Inverse simulation: genetic-algorithm based approach to analyzing emergent phenomena. In: Proceedings of the International Workshop on Emergent Synthesis (IWES’99), pp. 271–276 (1999)

  24. 24.

    Kurahashi, S., Terano, T.: Historical simulation: a study of civil service examinations, family line, and cultural capital in China. In: Proceeding of the 4th Conference of the European Social Simulation Association (ESSA07), pp. 139–150 (2007)

  25. 25.

    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC, Baco Raton (2007)

    MATH  Google Scholar 

  26. 26.

    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  27. 27.

    Sato, H., Ono, I., Kobayashi, S.: A new generation alternation model of genetic algorithms and its assessment. J. Jpn. Soc. Artif. Intell. 12(5), 734–735 (1997)

    Google Scholar 

  28. 28.

    Ono, I., Kita, H., Kobayashi, S.: A real-coded genetic algorithm using the unimodal normal distribution crossover. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Springer, NewYork (2002)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Jiang, B., Ono, I. et al. A grid based simulation environment for agent-based models with vast parameter spaces. Cluster Comput 19, 183–195 (2016). https://doi.org/10.1007/s10586-015-0500-6

Download citation

Keywords

  • Agent-based simulation
  • Grid computing
  • Forward simulation
  • Inverse simulation
  • Model selection