Cluster Computing

, Volume 18, Issue 4, pp 1331–1350 | Cite as

Harvesting idle CPU resources for desktop grid computing while limiting the slowdown generated to end-users

  • Eduardo Rosales
  • Germán Sotelo
  • Antonio de la Vega
  • César O. Díaz
  • Carlos E. Gómez
  • Harold Castro
Article
  • 189 Downloads

Abstract

We address the challenge of both harvesting idle CPU resources on off-the-shelf desktops donated to Desktop Grid Computing while at once limiting the slowdown generated to the resource owner, also known as end-user, to customized values. In this context, slowdown is studied as the increase in completion times of end-user tasks while a Desktop Grid harvests idle CPU resources by executing CPU intensive workloads. To achieve this, we deploy two Desktop Grids, one virtualization-based (UnaCloud) and one agent-based (BOINC). We then quantify the slowdown generated to simultaneously-running, end-user tasks. The results show that dynamic performance and energy-efficient technologies, specifically overclocking features, directly affect the slowdown generated to the end-user when incorporated into the processor used by the Desktop Grid. Furthermore, we propose, implement, and test a first set of resource allocation policies for the BOINC client in order to effectively harvest idle CPU resources while avoiding to exceed a customizable slowdown limit.

Keywords

Desktop grid computing Volunteer computing Slowdown Overclocking BOINC UnaCloud 

References

  1. 1.
    Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, pp. 4–10. IEEE Computer Society, Washington, DC, USA (2004). doi:10.1109/GRID.2004.14
  2. 2.
    Anderson, D.P.: Volunteer computing: the ultimate cloud. ACM Crossroads 16(3), 7–10 (2010)CrossRefGoogle Scholar
  3. 3.
    Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006. CCGRID 06, vol. 1, pp. 73–80. (2006)Google Scholar
  4. 4.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: An Approach to Easily Assemble Grids with Equitable Resource Sharing. Lecture Notes in Computer Science, vol. 2862, pp. 61–86. Springer, Berlin (2003). doi:10.1007/10968987-4
  5. 5.
    Atlas, J., Estrada, T., Decker, K., Taufer, M.: Balancing Scientist Needs and Volunteer Preferences in Volunteer Computing Using Constraint Optimization. Lecture Notes in Computer Science, vol. 5544(15), pp. 143–152. Springer, Berlin (2009). doi:10.1007/978-3-642-01970-8-15
  6. 6.
    BOINC: Boinccmd tool—boinc. http://boinc.berkeley.edu/wiki/Boinccmd-tool
  7. 7.
    BOINC: Client scheduling policies—boinc. http://boinc.berkeley.edu/trac/wiki/ClientSched
  8. 8.
    BOINC: Seti@home—boinc. http://setiathome.ssl.berkeley.edu/. Accessed 23 Nov 2014
  9. 9.
    BOINC: Volunteer computing (2013). http://boinc.berkeley.edu/trac/wiki/VolunteerComputing. Accessed 13 Oct 2014
  10. 10.
  11. 11.
    BOINC: Primegrid@home. http://www.primegrid.com/ (2014)
  12. 12.
    Bunci, P., Aguado-Sanchez, C., Blomer, J., Franco, L., Harutyunian, A., Mato, P., Yao, Y.: Cernvm—a virtual software appliance for lhc applications. J. Phys. 219(4), 43–53 (2010). doi:10.1088/1742-6596/219/4/042003 Google Scholar
  13. 13.
    Castro, H., Rosales, E., Villamizar, M., Jiménez, A.: Unagrid: on demand opportunistic desktop grid. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pp. 661–666. IEEE Computer Society, Washington, DC, USA (2010). doi:10.1109/CCGRID.2010.79
  14. 14.
    Charles, J., Jassi, P., Ananth, N.S., Sadat, A., Fedorova, A.: Evaluation of the intel core i7 turbo boost feature. In: IEEE International Symposium on Workload Characterization, 2009. IISWC 2009, pp. 188–197 (2009). doi:10.1109/IISWC.2009.5306782
  15. 15.
    Corporation, I.: First the tick, now the tock: Next generation intel microarchitecture (nehalem). Report (2009)Google Scholar
  16. 16.
    Corporation, I.: Enhanced intel speedstep technology—how to document. Report (2015). http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.h
  17. 17.
    Diaz, C., Pecero, J., Bouvry, P., Sotelo, G., Villamizar, M., Castro, H.: Performance evaluation of an iaas opportunistic cloud computing. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2014, pp. 546–547 (2014). doi:10.1109/CCGrid.2014.116
  18. 18.
    Domingues, P., Araujo, F., Silva, L.: Evaluating the performance and intrusiveness of virtual machines for desktop grid computing. In: IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS 2009, pp. 1–8 (2009). doi:10.1109/IPDPS.2009.5161134
  19. 19.
    Foster, I., Iamnitchi, A.: On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing. Lecture Notes in Computer Science, vol. 2735(11), pp. 118–128. Springer, Berlin (2003). doi:10.1007/978-3-540-45172-3-11
  20. 20.
    Hyperic, I.: Sigar api. http://www.hyperic.com/products/sigar
  21. 21.
    Intel: Intel math kernel library linpack download. https://software.intel.com/en-us/articles/intel-math-kernel-l
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    Intel: Intel turbo boost technology in intel core microarchitecture (nehalem) based processors. Report (2008). http://files.shareholder.com/
  26. 26.
    Kondo, D., Fedak, G., Cappello, F., Chien, A.A., Casanova, H.: Characterizing resource availability in enterprise desktop grids. Future Gener. Comput. Syst. 23(7), 888–903 (2007). doi:10.1016/j.future.2006.11.001 CrossRefGoogle Scholar
  27. 27.
    Laadan, O., Nieh, J.: Operating system virtualization: practice and experience (2010). doi:10.1145/1815695.1815717
  28. 28.
    Lo, D., Kozyrakis, C.: Dynamic management of turbomode in modern multi-core chips. In: IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), 2014, pp. 603–613 (2014). doi:10.1109/HPCA.2014.6835969
  29. 29.
    Marosi, A., Kovnács, J., Kacsuk, P.: Towards a volunteer cloud system. Future Gener. Comput. Syst. 29(6), 1442–1451 (2013). doi:10.1016/j.future.2012.03.013 CrossRefGoogle Scholar
  30. 30.
    Microsoft: Perfmon. https://technet.microsoft.com/en-us/library/bb490957.aspx. Accessed 17 July 2015
  31. 31.
    Oracle: Configuring virtual machines. https://www.virtualbox.org/manual/ch03.html. Accessed 17 July 2015
  32. 32.
    Radojković, P., Girbal, S., Grasset, A., Quiñones, E., Yehia, S., Cazorla, F.J.: On the evaluation of the impact of shared resources in multithreaded cots processors in time-critical environments. ACM Trans. Archit. Code Optim. 8(4), 34 (2012). doi:10.1145/2086696.2086713
  33. 33.
    Rosales, E., Castro, H., Villamizar, M.: Unacloud: Opportunistic cloud computing infrastructure as a service. In: Cloud Computing 2011: The Second International Conference on Cloud Computing, GRIDs, and Virtualization, pp. 187–194. IARIA (2011)Google Scholar
  34. 34.
    VMware: Performance best practices for vmware workstation. https://www.vmware.com/pdf/ws7_performance.pdf. Accessed 17 July 2015

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eduardo Rosales
    • 1
  • Germán Sotelo
    • 1
  • Antonio de la Vega
    • 1
  • César O. Díaz
    • 1
  • Carlos E. Gómez
    • 1
    • 2
  • Harold Castro
    • 1
  1. 1.Systems and Computing Engineering Department, School of EngineeringUniversidad de los AndesBogotáColombia
  2. 2.Universidad del QuindioArmeniaColombia

Personalised recommendations