Cluster Computing

, Volume 17, Issue 3, pp 665–680 | Cite as

Enhanced chained and Cuckoo hashing methods for multi-core CPUs

  • Euihyeok Kim
  • Min-Soo KimEmail author


A hash table is a fundamental data structure implementing an associative memory that maps a key to its associative value. Besides, the paradigm of micro-architecture design of CPUs is shifting away from faster uniprocessors toward slower chip multiprocessors. In this paper, we propose enhanced chained hashing and Cuckoo hashing methods for modern computers having a lot of CPU cores with exploiting CPU cache line and hardware level lock-free operations. The proposed methods outperform the existing methods in most cases and are very scalable in terms of the number of CPU cores. In addition, their performances do not degrade much even with a high fill factor (e.g., 90 %). Through extensive experiments using Intel 32-core machine, we have shown our proposed methods improve performance compared with the state-of-the-art version of the four exiting major hashing methods of linear, chained, Cuckoo, and Hopscotch.


Linear hashing Chained hashing  Cuckoo hashing Hopscotch hashing Lock-free  Cache line 



This research was supported by the IT R&D program of MKE/KEIT(10041145, Self-Organized Software platform(SoSp) for Welfare Devices) and the DGIST R&D Program of the Ministry of Education, Science and Technology of Korea(13-BD-0403).


  1. 1.
    Ijtihadie, R., Hidayanto, B., Affandi, A., Chisaki, Y., Usagawa, T.: Dynamic content synchronization between learning management systems over limited bandwidth network. HCIS Hum. Cent. Comput. Inf. Sci. 2(1), 1–16 (2012)CrossRefGoogle Scholar
  2. 2.
    Chen, C.-W., Tsai, Y.-R., Shiuh-Jeng, W.: Cost-saving key agreement via secret sharing in two-party communication systems. JoC J. Convergence 3(4), 29–36 (2012)Google Scholar
  3. 3.
    Tsai, C.-L., Chen, C.-J., Zhuang, D.-J.: Trusted M-banking verification scheme based on a combination of OTP and biometrics. JoC J. Convergence 3(3), 23–30 (2012)Google Scholar
  4. 4.
    Agarwal, S., Rungta, A., Padmavathy, R., Shankar, M., Rajan, N.: An improved fast and secure hash slgorithm. JIPS J. Inf. Process. Syst. 8(1), 119–132 (2012)Google Scholar
  5. 5.
    Litwin, W.: Linear hashing: a new tool for file and table addressing. In: Proceedings of the 6th International Conference on Very Large Data, Bases, pp. 212–223 (1980)Google Scholar
  6. 6.
    Fagin, R., Nievergelt, J., Pippenger, N., Strong, H.R.: Extendible hashing: a fast access method for dynamic files. ACM Trans. Datab. Syst. 4(3), 315–344 (1979). doi: 10.1145/320083.320092 CrossRefGoogle Scholar
  7. 7.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch hashing. In: Taubenfeld, G. (ed.) Distributed Computing, LNCS, vol. 5218, pp. 350–364. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open addressing. Distributed Comput. 18(1), 21–42 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference (Version 2.4). Computer Science Laboratory, SRI International, Menlo Park, CA (2001)Google Scholar
  11. 11.
    Dietzfelbinger, M., Schellbach, U.: On risks of using cuckoo hashing with simple universal hash classes. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 795–804 (2009)Google Scholar
  12. 12.
    Kutzelnigg, R.: An improved version of cuckoo hashing: average case analysis of construction cost and search operations. Math. Comput. Sci. 3(1), 47–60 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kutzelnigg, R.: A further analysis of cuckoo hashing with a stash and random graphs of excess r. Discret. Math. Theor. Comput. Sci. 12(3), 81–102 (2010)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Ferdman, M., Lotfi-Kamran, P., Balet, K., Falsafi, B.: Cuckoo directory: A scalable directory for many-core systems. In: High Performance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium, pp. 169–180 (2011)Google Scholar
  15. 15.
    Frieze, A., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo hashing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, LNCS, vol. 5687, pp. 490–503. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Porat, E., Shalem, B.: A cuckoo hashing variant with improved memory utilization and insertion time. In: Data Compression Conference (DCC), pp. 347–356 (2012)Google Scholar
  17. 17.
    Drmota, M., Kutzelnigg, R.: A precise analysis of cuckoo hashing. ACM Trans. Algorithms (TALG) 8(2), 11 (2012)MathSciNetGoogle Scholar
  18. 18.
    Purcell, C., Harris, T.: Non-blocking hashtables with open addressing. In: Distributed Computing, pp. 108–121. Springer, (2005)Google Scholar
  19. 19.
    Stivala, A., Stuckey, P.J., Garcia de la Banda, M., Hermenegildo, M., Wirth, A.: Lock-free parallel dynamic programming. J. Parallel Distributed Comput. 70(8), 839–848 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Shalev, O., Shavit, N.: Split-ordered lists: lock-free extensible hash tables. J. ACM (JACM) 53(3), 379–405 (2006)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, New York (2012)Google Scholar
  22. 22.
    DIMACS.: New York City Shortest Paths. 9th DIMACS Implementation Challenge. (2010). Accessed 14 June 2010
  23. 23.
    Chilimbi, T.: Cache-Conscious Data Structures -Design and Implementation. Ph.D. thesis, University of Wisconsin-Madison (1999)Google Scholar
  24. 24.
    Askitis, N.: Efficient Data Structures for Cache Architectures. Ph.D. thesis, RMIT University (2007) Google Scholar
  25. 25.
    Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with worst case constant access time. In: Proceedings of the 20th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 271–282 (2003)Google Scholar
  26. 26.
    Pan, J., Manocha, D.: Fast GPU-based Locality Sensitive Hashing for K-Neares Neighbor Computation. In: ACM SIGSPATIAL, GIS, pp. 211–220 (2011)Google Scholar
  27. 27.
    Valgrind: an open-source memory debugger for x86-GNU/Linux. Accessed 2 April 2013

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringDGISTDaeguKorea

Personalised recommendations