Skip to main content
Log in

A general purpose parallel block structured open source incompressible flow solver

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

A general purpose incompressible flow solver, called caffa3d.MBRi, is presented which features a block structured framework to accommodate both a flexible approach to geometry representation and a straightforward implementation of parallel capabilities through the MPI library. Representation of complex geometries can be handled semi automatically through a combination of body fitted blocks of grids and the immersed boundary condition strategy over both Cartesian and body fitted grid blocks. The parallelization strategy is based on the same block structured framework, by means of encapsulated MPI calls performing a set of conceptually defined high level communication tasks. A set of real world applications ranging from bioengineering to microclimate scenarios is presented to demonstrate the capabilities of the solver, which is open source and freely available through the web page.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. www.fing.edu.uy/imfia/caffa3d.MB.

References

  1. Ferziger, J., Peric, M.: Computational methods for fluid dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Igounet, P., Alfaro, P., Usera, G., Ezzatti, P.: Towards a finite volume model in a many-core platform. Int. J. High Perform. Syst. Archit.

  3. Lange, C.F., Schäfer, M., Durst, F.: Local block refinement with a multigrid solver. Int. J. Numer. Methods Fluids 38, 21–41 (2002)

    Article  MATH  Google Scholar 

  4. Lehnhauser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)

    Article  Google Scholar 

  5. Lehnhauser, T., Schäfer, M.: Efficient discretization of pressure-correction equations on non-orthogonal grids. Int. J. Numer. Methods Fluids 42, 211–231 (2003)

    Article  Google Scholar 

  6. Liao, C., Chang, Y., Lin, C., McDonough, J.M.: Simulating flows with moving rigid boundary using immersed-boundary method. Comput. Fluids 39, 152–167 (2010)

    Article  MATH  Google Scholar 

  7. Lilek, Z., Muzaferija, S., Peric, M., Seidl, V.: An implicit finite-volume method using nonmatching blocks of structured grid. Numer. Heat Transf. Part B 32, 385–401 (1997)

    Article  Google Scholar 

  8. Mora Acosta, J.: Numerical algorithms for three dimensional computational fluid dynamic problems. Ph.D. Thesis, UPC (2001)

  9. Peric, M.: Numerical methods for computing turbulent flows. Course notes (2001)

  10. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  11. Silva Lopes, A., Palma, J.M.L.M., Castro, F.A.: Simulation of the Askervein flow. Part 2: Large-eddy simulations. Bound.-Layer Meteorol. 125, 85–108 (2007)

    Article  Google Scholar 

  12. Stewart, B.E., Leweke, T., Hourigan, K., Thompson, M.C.: Wake formation behind a rolling sphere. Phys. Fluids 20, 071704 (2008)

    Article  Google Scholar 

  13. Stewart, B.E., Thompson, M.C., Leweke, T., Hourigan, K.: Numerical and experimental studies of the rolling sphere wake. J. Fluid Mech. 643, 137–162 (2010)

    Article  MATH  Google Scholar 

  14. Taylor, P., Teunissen, H.: Askervein ’82: report on the September/October 1982 experiment to study boundary layer flow over Askervein, South Uist. Technical Report MSRS-83-8, Meteorological Services Research Branch, Atmospheric Environment Service, Downsview, Ontario, Canada (1983), p. 172

  15. Taylor, P., Teunissen, H.: The Askervein Hill Project: report on the September/October 1983, main field experiment. Technical Report MSRS-84-6, Meteorological Services Research Branch, Atmospheric Environment Service, Downsview, Ontario, Canada (1985), p. 300

  16. Usera, G., Vernet, A., Ferré, J.A.: Use of time resolved PIV for validating LES/DNS of the turbulent flow within a PCB enclosure model. Flow Turbul. Combust. 77, 77–95 (2006)

    Article  MATH  Google Scholar 

  17. Usera, G., Vernet, A., Ferré, J.A.: A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces. Flow Turbul. Combust. 77, 471–495 (2008)

    Article  Google Scholar 

  18. Zaleski, S.: Science and fluid dynamics should have more open sources (2001). http://www.lmm.jussieu.fr/~zaleski/OpenCFD.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Usera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendina, M., Draper, M., Kelm Soares, A.P. et al. A general purpose parallel block structured open source incompressible flow solver. Cluster Comput 17, 231–241 (2014). https://doi.org/10.1007/s10586-013-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-013-0323-2

Keywords

Navigation