Advertisement

Cluster Computing

, Volume 16, Issue 4, pp 693–706 | Cite as

Selecting skyline services for QoS-aware composition by upgrading MapReduce paradigm

  • Jian Wu
  • Liang ChenEmail author
  • Qi Yu
  • Li Kuang
  • Yilun Wang
  • Zhaohui Wu
Article

Abstract

With the development of web technologies and cloud computing, more and more services which provide similar functionality but differ in QoS are deployed on the Internet via cloud platforms. Recently, skyline analysis is adopted to select candidate services with better QoS to facilitate the process of QoS-aware service composition. However, the fast increasing number of services, multiple QoS attributes to be considered, and dynamic service environment pose a big challenge to skyline service selection.

In this paper, we present a parallel skyline service selection method to improve the efficiency by upgrading the MapReduce paradigm. An angle-based dataspace partitioning approach is employed in our MapReduce based skyline service selection. In particular, we explore the dominance power of local skyline services to improve the efficiency of selection, and present two detailed algorithms. To handle the dynamic nature of service environment, we employ Paper-Tape (PT) model which is used to rapidly locate varying services, and present a dynamic skyline service selection algorithm based on PT model. By experimenting over both real and synthetical datasets, we demonstrate the efficiency of our proposed methods.

Keywords

Service selection Skyline query Map Reduce QoS 

Notes

Acknowledgements

This research was partially supported by the National Technology Support Program under grant of 2011BAH16B04, the National Natural Science Foundation of China under grant of No. 61173176, Science and Technology Program of Zhejiang Province under grant of 2008C03007, Zhejiang Provincial Natural Science Foundation of China under grant number Y1110591, National High-Tech Research and Development Plan of China under Grant No. 2011AA010501.

References

  1. 1.
    Alrifai, M., Risse, T.: Combing global optimization with local selection for efficient qos-aware service composition. In: World Wide Web Conference (WWW), pp. 881–890 (2009) Google Scholar
  2. 2.
    Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web service composition. In: Int’l Conf. on World Wide Web (WWW), pp. 11–20 (2010) Google Scholar
  3. 3.
    Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. Softw. Eng. 33(6), 369–384 (2007) CrossRefGoogle Scholar
  4. 4.
    Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In: Extending Database Technology, pp. 256–273 (2004) Google Scholar
  5. 5.
    Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: International Conference on Data Engineering (ICDE), pp. 421–430 (2001) Google Scholar
  6. 6.
    Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L.: Flow-based service selection for web service composition supporting multiple qos classes. In: Int’l Conference on Web Services, pp. 743–750 (2007) CrossRefGoogle Scholar
  7. 7.
    Chen, L., Kuang, L., Wu, J.: Mapreduce based skyline services selection for qos-aware composition. In: International Workshop on High Performance Data Intensive Computing (HPDIC) in Conjunction with IPDPS, pp. 2035–2042 (2012) Google Scholar
  8. 8.
    Chen, L., Wu, J., Deng, S., Li, Y.: Recommendation on uncertain services. In: International Conference on Web Services, pp. 683–684 (2010) Google Scholar
  9. 9.
    Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In: International Conference on Data Engineering, pp. 796–805 (2007) Google Scholar
  10. 10.
    Diamadopoulou, V., Makris, C., Panagis, Y., Sakkopoulos, E.: Techniques to support web service selection and consumption with qos characteristics. J. Netw. Comput. Appl. 31(2), 108–130 (2008) CrossRefGoogle Scholar
  11. 11.
    McLain, D., Patel, J., Grosky, W.: Efficient continuous skyline computation. In: Proceedings of International Conference on Data Engineering, pp. 108–110 (2006) Google Scholar
  12. 12.
    Eyhab, A., Mahmoud, Q.H.: Discovering the best web service. In: International World Wide Web Conference, pp. 1257–1258 (2007) Google Scholar
  13. 13.
    Kossmann, D., Ramsak, F.: Shooting stars in the sky: an online algorithm for skyline queries. In: International Conference on Very Large Data Base (VLDB), pp. 275–286 (2002) CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Ngu, A.H., Zeng, L.: Qos computation and policing in dynamic web service selection. In: International World Wide Web Conference (WWW), pp. 66–73 (2004) Google Scholar
  15. 15.
    Makris, C., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.K.: Efficient and adaptive discovery techniques of web services handling large data sets. J. Syst. Softw. 79(4), 480–495 (2006) CrossRefGoogle Scholar
  16. 16.
    Pan, L., Chen, L., Wu, J.: Skyline web service selection with mapreduce. In: International Conference on Computer Science and Service System, pp. 739–743 (2011) Google Scholar
  17. 17.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: International Conference on Management of Data (SIGMOD), pp. 467–478 (2003) Google Scholar
  18. 18.
    Papazoglou, M.: Service-oriented computing: concepts, characteristics and directions. In: Proc. of the Fourth International Conference on Web Information Systems Engineering, pp. 3–12 (2003) Google Scholar
  19. 19.
    Ran, S.: A model for web services discovery with qos. In: ACM SIGecom Exchanges, pp. 1–10 (2003) Google Scholar
  20. 20.
    Tan, K., Eng, P., Ooi, B.: Efficient progressive skyline computation. In: International Conference on Very Large Data Base, pp. 301–310 (2001) Google Scholar
  21. 21.
    Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for efficient parallel skyline computation. In: SIGMOD, pp. 227–238 (2008) CrossRefGoogle Scholar
  22. 22.
    Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient skyline query processing on peer-to-peer networks. In: International Conference on Data Engineering (ICDE), pp. 1126–1135 (2007) Google Scholar
  23. 23.
    Wang, Y., Vassileva, J.: Toward trust and reputation based web service selection: a survey. Int. Trans. Syst. Sci. Appl. 3(2), 118–132 (2007) Google Scholar
  24. 24.
    Wu, J., Chen, L., Deng, S., Li, Y., Kuang, L.: Qos-skyline based dynamic service selection. Chin. J. Comput. 33(11), 2136–2146 (2010) CrossRefGoogle Scholar
  25. 25.
    Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: a system for effective web service discovery. In: World Wide Web Conference, Demo Track, pp. 441–444 (2012) Google Scholar
  26. 26.
    Taher, Y., Benslimane, D., Fauvet, M.C., Maamar, Z.: Towards an approach for web services substitution. In: Proceedings of the 10th International Database Engineering and Applications Symposium, pp. 166–173 (2006) Google Scholar
  27. 27.
    Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE Trans. Serv. Comput. 3(1), 16–29 (2010) CrossRefGoogle Scholar
  28. 28.
    Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with end-to-end qos constraints. ACM Trans. Web 1(1), 1–26 (2007) CrossRefGoogle Scholar
  29. 29.
    Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004) CrossRefGoogle Scholar
  30. 30.
    Zhang, B., Zhou, S., Guan, J.: Adapting skyline computation to the mapreduce framework: algorithms and experiments. In: DASFAA Workshop. Lecture Notes in Computer Science, vol. 6637, pp. 403–411 (2011) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jian Wu
    • 1
  • Liang Chen
    • 1
    Email author
  • Qi Yu
    • 2
  • Li Kuang
    • 3
  • Yilun Wang
    • 1
  • Zhaohui Wu
    • 1
  1. 1.College of Computer Science & TechnologyZhejiang UniversityHangzhouP.R. China
  2. 2.College of Computing and Information SciencesRochester Institute of TechnologyRochesterUSA
  3. 3.Hangzhou Institute of Service EngineeringHangzhou Normal UniversityHangzhouP.R. China

Personalised recommendations