Cluster Computing

, Volume 16, Issue 3, pp 545–557 | Cite as

Green flexible opportunistic computing with task consolidation and virtualization

  • Harold Castro
  • Mario Villamizar
  • German Sotelo
  • Cesar O. Diaz
  • Johnatan E. Pecero
  • Pascal Bouvry
Article

Abstract

Energy efficiency and high computing power are basic design considerations across modern-day computing solutions due to different concerns such as system performance, operational cost, and environmental issues. Desktop Grid and Volunteer Computing System (DGVCS) so called opportunistic infrastructures offer computational power at low cost focused on harvesting idle computing cycles of existing commodity computing resources. Other than allowing to customize the end user offer, virtualization is considered as one key techniques to reduce energy consumption in large-scale systems and contributes to the scalability of the system. This paper presents an energy efficient approach for opportunistic infrastructures based on task consolidation and customization of virtual machines. The experimental results with single desktops and complete computer rooms show that virtualization significantly improves the energy efficiency of opportunistic grids compared with dedicated computing systems without disturbing the end-user.

Keywords

Grid computing Opportunistic Computing Scalable architectures Virtualization Energy-aware systems Performance of systems 

References

  1. 1.
    Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: Proc of the 5th IEEE/ACM Int Workshop on Grid Computing, ser. GRID’04, USA, pp. 4–10 (2004) CrossRefGoogle Scholar
  2. 2.
    Top 500: List of 500, visited 2009. Available at http://www.top500.org/list/2009/06/100
  3. 3.
    Colombia: Universidad de los Andes, visited 2011. Available at http://www.uniandes.edu.co
  4. 4.
    GISELA: Grid Initiatives for E-Science Virtual Communities in Europe and Latin America, visited 2011. Available at http://www.gisela-grid.eu
  5. 5.
    OSG: Open Science Grid, visited 2011. Available at http://www.opensciencegrid.org/
  6. 6.
    HAMEG Instruments: Model: HM8115-2 wattmeter, visited 2011. Available at http://www.hameg.com/0.147.0.html
  7. 7.
    Cardoso, M.C., Costa, F.M.: MPI support on opportunistic grids based on the InteGrade middleware. Concurr. Comput. 22(3), 343–357 (2010) Google Scholar
  8. 8.
    Finger, M., Bezerra, G.C., Conde, D.R.: Resource use pattern analysis for predicting resource availability in opportunistic grids. Concurr. Comput. 22(3), 295–313 (2010) Google Scholar
  9. 9.
    Gomes, R.A., Costa, F.M.: An approach to enhance the efficiency of opportunistic grids. Concurr. Comput. 23(17), 2092–2106 (2011) CrossRefGoogle Scholar
  10. 10.
    Soch, J.F., Hupp, J.A.: The “worm” programs—early experience with a distributed computation. Commun. ACM 25(3), 172–180 (1982) CrossRefGoogle Scholar
  11. 11.
    Litzkow, M., Livny, M., Mutka, M.: Condor-a hunter of idle workstations. In: Procs. IEEE Int. Conf. on Distributed Computing Systems, San Jose, CA, USA, pp. 104–111 (1988) Google Scholar
  12. 12.
    Mersenne Research, Inc.: GIMPS: Great Internet mersenne prime. [online] January 2010. [Cited: June 15, 2009] http://www.mersenne.org/
  13. 13.
    Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002) CrossRefGoogle Scholar
  14. 14.
    Distributed.Net: Distributed.net FAQ-O-Matic. [Online] July 2011. [Cited: June 17, 2009] http://www.distributed.net
  15. 15.
    Sarmenta, L.F.G., Chua, S.J.V., Echevarria, P., Mendoza, J.M., Santos, R.R., Tan, S., Lozada, R.P.: Bayanihan Computing.NET: grid computing with XML Web services. In: IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2002), Berlin, Germany, pp. 434–435 (2002) CrossRefGoogle Scholar
  16. 16.
    Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: a computation management agent for multi-institutional grids. Clust. Comput. 5(3), 237–246 (2002) CrossRefGoogle Scholar
  17. 17.
    Goldchleger, A., Kon, F., Goldman, A., Finger, M., Capistrano Bezerra, G.: InteGrade object-oriented grid middleware leveraging the idle computing power of desktop machines. Concurr. Comput. 16(5), 449–459 (2004) CrossRefGoogle Scholar
  18. 18.
    Germain, C., Néri, V., Fedak, G., Cappello, F.: XtremWeb: building an experimental platform for global computing. GRID 2000. In: Lecture Notes in Computer Science, vol. 1971 pp. 91–101. Springer, Berlin (2000) Google Scholar
  19. 19.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an approach to easily assemble grids with equitable resource sharing. In: Lecture Notes in Computer Science, vol. 2862, pp. 61–86. Springer, Berlin (2003) Google Scholar
  20. 20.
    Anglano, C., Canonico, M., Guazzone, M.: The sharegrid peer-to-peer desktop grid: infrastructure, applications, and performance evaluation. J. Grid Comput. 8(4), 543–570 (2010) CrossRefGoogle Scholar
  21. 21.
    Bunci, P., Aguado Sanchez, C., Blomer, J., Franco, L., Harutyunian, A., Mato, P., Yao, Y.: CernVM—a virtual software appliance for LHC applications. J. Phys. 219(4) (2010). doi:10.1088/1742-6596/219/4/042003
  22. 22.
    CERN: Ladron Hadron Collector, visited (2009). Available at http://lhcathome.cern.ch/lhcathome/
  23. 23.
    Villamizar Cano, M.J., Castro Barrera, H.E., Mendez Lopez, D., Restrepo Restrepo, S., Rodriguez Rojas, L.M.: Bio-UnaGrid: easing bioinformatics workflow execution using LONI pipeline and a virtual desktop grid. In: Procs. of the Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, Italy (2011) Google Scholar
  24. 24.
    Barroso, L.A., Hölzle, U.: The case for energy proportional computing. Computer 40(12), 33–37 (2007) CrossRefGoogle Scholar
  25. 25.
    Diaz, C.O., Guzek, M., Pecero, J.E., Bouvry, P., Khan, S.U.: Scalable and energy efficient scheduling techniques for large-scale systems. In: CIT’11 Proceedings of the 2011 IEEE 11th International Conference on Computer and Information Technology, pp. 641–647, Pafos, Cyprus. IEEE Computer Society, Washington (2011) CrossRefGoogle Scholar
  26. 26.
    Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299–316 (2000) CrossRefGoogle Scholar
  27. 27.
    Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced cpu energy. In: OSDI’94: Proceedings of the 1st USENIX Conference on Operating Systems Design and Implementation, Berkeley, CA, USA, pp. 13–23 (1994) Google Scholar
  28. 28.
    Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20, 346–360 (2009) CrossRefGoogle Scholar
  29. 29.
    Kim, J.-K., Siegel, H., Maciejewski, A., Eigenmann, R.: Dynamic resource management in energy constrained heterogeneous computing systems using voltage scaling. IEEE Trans. Parallel Distrib. Syst. 19, 1445–1457 (2008) CrossRefGoogle Scholar
  30. 30.
    Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proc. of the 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541–548. IEEE Computer Society, Washington (2007) Google Scholar
  31. 31.
    Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 1374–1381 (2011) CrossRefGoogle Scholar
  32. 32.
    Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E.G., Zomaya, A., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011) CrossRefGoogle Scholar
  33. 33.
    Pecero, J., Bouvry, P., Fraire Huacuja, H.J., Khan, S.: A multi-objective grasp algorithm for joint optimization of energy consumption and schedule length of precedence-constrained applications. In: Int. Conf. Cloud and Green Computing, pp. 1–8, Sydney, Australia. IEEE CS Press, Los Alamitos (2011) Google Scholar
  34. 34.
    Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A.Y., Xu, C.-Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing system. Clust. Comput. (2011). doi:10.1007/s10586-11-0171-x Google Scholar
  35. 35.
    Orgerie, A.C., Lefèvre, L., Gelas, J.-P.: Save watts in your grid: green strategies for Energy-Aware framework in large scale distributed systems. In: Proceedings of the 2008 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS’08), pp. 171–178. IEEE Computer Society, Washington (2008) CrossRefGoogle Scholar
  36. 36.
    Lammie, M., Thain, D., Brenner, P.: Scheduling grid workloads on multicore clusters to minimize energy and maximize performance. In: 10th IEEE/ACM International Conference on IEEE Grid Computing, Banff, AB, pp. 145–152 (2009) Google Scholar
  37. 37.
    Da Costa, G., Gelas, J.-P., Georgiou, Y., Lefèvre, L., Orgerie, A.-C., Pierson, J.-M., Richard, O., Sharma, K.: The GREEN-NET framework: energy efficiency in large scale distributed systems. In: Procs. of IEEE Int Symposium Parallel & Distributed Processing (IPDPS 2009), Rome, pp. 1–8 (2009) CrossRefGoogle Scholar
  38. 38.
    Ponciano, L., Brasileiro, F.V.: On the impact of energy-saving strategies in opportunistic grids. In: Proceedings of the 2010 11th IEEE/ACM International Conference on Grid Computing (GRID 2010), Brussels, Belgium, pp. 282–289 (2011) Google Scholar
  39. 39.
    Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. (2010). doi:10.1007/s11227-010-0421-3 Google Scholar
  40. 40.
    Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.Y.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 47–111 (2011) CrossRefGoogle Scholar
  41. 41.
    Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of virtual machines for real-time cloud services. Concurr. Comput. 23(13), 1491–1505 (2011) CrossRefGoogle Scholar
  42. 42.
    Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomput. (2011). doi:10.1007/s11227-011-0658-5 Google Scholar
  43. 43.
    Sahoo, J., Mohapatra, S., Lath, R.: Virtualization: a survey on concepts, taxonomy and associated security issues. In: Proc. of the 2010 Second Int Conf on Computer and Network Technology, ser. ICCNT’10, USA, pp. 222–226 (2010) CrossRefGoogle Scholar
  44. 44.
    Walters, J.P., Chaudhary, V., Cha, M., S, G. Jr., Gallo, S.M.: A comparison of virtualization technologies for hpc. In: AINA’2008, Washington, DC, USA, pp. 861–868 (2008) Google Scholar
  45. 45.
    Ward, B.: The Book of VMware: The Complete Guide to VMware Workstation, 1st edn. No Starch Press, San Francisco (2002) Google Scholar
  46. 46.
    Wilson, E.: Microsoft®VBScript Step by Step, 1st edn. Microsoft Press, Redmond (2006) Google Scholar
  47. 47.
    Russinovich, M.E., Solomon, D.A.: Microsoft Windows Internals, 4th edn. Microsoft Windows Server (TM) 2003, Windows XP, and Windows 2000 (Pro-Developer). Microsoft Press, Redmond (2004) Google Scholar
  48. 48.
    Castro, H.: Grid Uniandes Management Application. preprint (2003). Available at http://agamenon.uniandes.edu.co/~grid/wiki/doku.php
  49. 49.
    Vargas, A., Ocampo, L., Cépedes, M., Carreño, N., González, A., Rojas, A., Zuluaga, A., Myers, K., Fry, W., Jiménez, P., Bernal, A., Restrepo, S.: Characterization of phytophthora infestans populations in Colombia: first report of the a2 mating type. Phytopathology 99(1), 82–88 (2009) CrossRefGoogle Scholar
  50. 50.
    Gonzalez, A., Castro, H., Villamizar, M., Cuervo, N., Lozano, G., Restrepo, S., Orduz, S.: Mesoscale modeling of the bacillus thuringiensis sporulation network based on stochastic kinetics and its application for in silico scale-down. In: Proc. of the 2009 Int Workshop on High Performance Computational Systems Biology, ser. HIBI’09, Washington, DC, USA, pp. 3–12 (2009) CrossRefGoogle Scholar
  51. 51.
    Ramírez, M.A., Bernal, A., Castro, H., Walteros, J.L., Medaglia, A.L.: Jg2a: A grid-enabled object-oriented framework for developing genetic algorithms. In: Proc. of the IEEE Systems and Information Engineering Design Symposium SIEDS’09, Virginia, USA, pp. 62–72 (2009) Google Scholar
  52. 52.
    Castro, H., Rosales, E., Villamizar, M., Miller, A.: UnaGrid—on demand opportunistic desktop grid. In: Proc. of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 661–666 (2010). doi:10.1109/CCGRID.2010.79 Google Scholar
  53. 53.
    Castro, H., Villamizar, M., Rosales, E.: Using the opportunistic UnaGrid infrastructure to support the development of e-science projects. In: The 15th WSEAS International Conference on COMPUTERS, Corfu Island, Greece (2011) Google Scholar
  54. 54.
    Kondo, D., Fedak, G., Cappello, F., Chien, A., Casanova, H.: Characterizing resource availability in enterprise desktop grids. Future Gener. Comput. Syst., 23, 888–903 (2007) CrossRefGoogle Scholar
  55. 55.
    Domingues, P., Marques, P., Silva, L.: Resource usage of windows computer laboratories. In: International Conference Workshops on Parallel Processing (ICPP), pp. 469–476 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Harold Castro
    • 1
  • Mario Villamizar
    • 1
  • German Sotelo
    • 1
  • Cesar O. Diaz
    • 2
  • Johnatan E. Pecero
    • 2
  • Pascal Bouvry
    • 2
  1. 1.Department of Systems and Computer EngineeringUniversidad de los AndesBogotáColombia
  2. 2.Computer Science and Communications Research UnitUniversity of LuxembourgLuxembourg-KirchbergLuxembourg

Personalised recommendations