Cluster Computing

, Volume 16, Issue 1, pp 157–170 | Cite as

A communication-efficient linear system solver for large eddy simulation of jet engine noise

  • Yingchong Situ
  • Lixia Liu
  • Chandra S. Martha
  • Matthew E. Louis
  • Zhiyuan Li
  • Ahmed H. Sameh
  • Gregory A. Blasidell
  • Anatasios S. Lyrintzis
Article

Abstract

High-fidelity computational fluid dynamics (CFD) tools, such as the large eddy simulation technique, have become feasible in aiding the field of computational aeroacoustics (CAA) to compute noise on petascale computing platforms. CAA poses significant challenges for researchers because the computational schemes used in the CFD tools should have high accuracy, good spectral resolution, and low dispersion and diffusion errors. A high-order compact finite difference scheme, which is implicit in space, can be used for such simulations because it fulfills the requirements for CAA. Usually, this method is parallelized using a transposition scheme; however, that approach has a high communication overhead. In this paper, we discuss the use of a parallel tridiagonal linear system solver based on the truncated SPIKE algorithm for reducing the communication overhead in our large eddy simulations. We present theoretical performance analysis and report experimental results collected on two parallel computing platforms.

Keywords

Finite difference methods Iterative solution techniques Linear systems Numerical algorithms Parallel algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammerling, S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: a portable linear algebra library for high-performance computers. In: Supercomputing ’90: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11. Los Alamitos, CA, USA. IEEE Computer Society Press, Los Alamitos (1990) Google Scholar
  2. 2.
    Catlett, C., et al.: TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications. In: Grandinetti, L. (ed.) High Performance Computing and Grids in Action. Advances in Parallel Computing, IOS Press, Amsterdam (2007) Google Scholar
  3. 3.
    Cray Inc. Using Cray Performance Analysis Tools, S-2376-50 (2009) Google Scholar
  4. 4.
    Dongarra, J.J., Sameh, A.H.: On some parallel banded system solvers. Parallel Comput. 1(3–4), 223–235 (1984) CrossRefGoogle Scholar
  5. 5.
    Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60(1), 315–339 (1991) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Koutsavdis, E.K., Blaisdell, G.A., Lyrintzis, A.S.: Compact schemes with spatial filtering in computational aeroacoustics. AIAA J. 38, 713–715 (2000) CrossRefGoogle Scholar
  7. 7.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kjelgaard Mikkelsen, C.C., Manguoglu, M.: Analysis of the truncated SPIKE algorithm. SIAM J. Matrix Anal. Appl. 30(4), 1500–1519 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware performance counters. In: Proceedings of the Department of Defense HPCMP Users Group Conference, pp. 7–10 (1999) Google Scholar
  10. 10.
    Polizzi, E., Sameh, H.S.: A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput. 32(2), 177–194 (2006). Parallel Matrix Algorithms and Applications (PMAA’04) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Uzun, A., Lyrintzis, A.S., Blaisdell, G.A.: Coupling of integral acoustics methods with LES for jet noise prediction. Int. J. Aeroacoust. 3(4), 297–346 (2004) CrossRefGoogle Scholar
  12. 12.
    Uzun, A.: 3-D large eddy simulation for jet aeroacoustics. PhD thesis, School of Aeronautics and Astronautics, Purdue University (2003) Google Scholar
  13. 13.
    Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Application of compact schemes to large eddy simulation of turbulent jets. J. Sci. Comput. 21(3), 283–319 (2004) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992) MATHCrossRefGoogle Scholar
  15. 15.
    Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(4), 1259–1286 (2001) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yingchong Situ
    • 1
  • Lixia Liu
    • 3
  • Chandra S. Martha
    • 2
  • Matthew E. Louis
    • 2
  • Zhiyuan Li
    • 1
  • Ahmed H. Sameh
    • 1
  • Gregory A. Blasidell
    • 2
  • Anatasios S. Lyrintzis
    • 2
  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  2. 2.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA
  3. 3.Google Inc.KirklandUSA

Personalised recommendations