Cluster Computing

, Volume 16, Issue 1, pp 17–26 | Cite as

Classified power capping by network distribution trees for green computing

  • Zhengkai WuEmail author
  • Christopher Giles
  • Jun Wang


Power management is becoming very important in data centers. To apply power management in cloud computing, Green Computing has been proposed and considered. Cloud computing is one of the new promising techniques, that are appealing to many big companies. In fact, due to its dynamic structure and property in online services, cloud computing differs from current data centers in terms of power management. To better manage the power consumption of web services in cloud computing with dynamic user locations and behaviors, we propose a power budgeting design based on the logical level, using distribution trees. By setting multiple trees or forest, we can differentiate and analyze the effect of workload types and Service Level Agreements (SLAs, e.g. response time) in terms of power characteristics. Based on these, we introduce classified power capping for different services as the control reference to maximize power saving when there are mixed workloads.


Distribution tree Power budgeting Power consumption on the logical level SLA Classified power capping Cloud computing Green computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AbdelSalam, H., Maly, K., Mukkamala, R., Zubair, M., Kaminsky, D.: Towards energy efficient change management in a cloud computing environment. In: Scalability of Networks and Services. Lecture Notes in Computer Science, vol. 5637. Springer, Berlin (2009) CrossRefGoogle Scholar
  2. 2.
    Amazon Elastic Compute Cloud:
  3. 3.
    Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data centers using online measurements. In: SIGMETRICS’03, San Diego, California, USA, June 10–14, 2003. ACM, New York (2003). 1-58113-664-1/03/0006 Google Scholar
  4. 4.
    Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing energy and server resources in hosting centers. In: Proceedings of the 18th Symposium on Operating Systems Principles (SOSP) (2001) Google Scholar
  5. 5.
    Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Managing server energy and operational costs in hosting centers. In: ACM SIGMETRICS Performance Evaluation Review (2005) Google Scholar
  6. 6.
    Data Center Energy Efficiency with Intel Power Management Technologies, Intel Information Technology, Data Centers, February 2010 Google Scholar
  7. 7.
    Femal, M., Freeh, V.: Boosting data center performance through non-uniform power allocation. In: Proceedings of the IEEE International Conference on Autonomic Computing (ICIA) (2005) Google Scholar
  8. 8.
    Fouquet, M.: Position Paper. Technische Universität. Cloud Computing for the Masses, U-NET’09, December 12009. Rome, Italy, ACM (2009) Google Scholar
  9. 9.
    Ge, R., Feng, X., Feng, W., Cameron, K.: CPU miser: a performance-directed, run-time system for power-aware clusters. In: Proceedings of the International Conference on Parallel Processing (ICPP) (2007) Google Scholar
  10. 10.
    Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: ElasticTree: saving energy in data center networks. Usenix (2010) Google Scholar
  11. 11.
    Khalid, F.: Cloud computing: local user expectations. In: Open Cirrus Summit, 28–29 January 2010 Google Scholar
  12. 12.
    Kishimoto, Z.: Can cloud computing be energy efficient?
  13. 13.
    Lefurgy, C., Wang, X., Ware, M.: Server-level power control. In: Proceedings of the IEEE International Conference on Autonomic Computing (ICAC), June 2007 Google Scholar
  14. 14.
    Nathuji, R., Schwan, K., Somani, A., Joshi, Y.: VPM tokens: virtual machine-aware power budgeting in datacenters. Cluster Comput. 12(2), 189–203 (2009). doi: 10.1007/s10586-009-0077-z CrossRefGoogle Scholar
  15. 15.
    Pakbaznia, E., Pedram, M.: Minimizing data center cooling and server power costs. In: Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design (2009) Google Scholar
  16. 16.
    Pfleeger, S.L., Atlee, J.M.: Testing the programs, 4th edn. In: Software Engineering: Theory and Practice Google Scholar
  17. 17.
    Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power” struggles: coordinated multi-level power management for the data center. doi: 10.1145/1346281.1346289
  18. 18.
    Rajamani, K., Lefurgy, C.: On evaluating request-distribution schemes for saving energy in server clusters. In: Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), March 2003 Google Scholar
  19. 19.
    Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power management for dense blade servers. In: Proceedings of the International Symposium on Computer Architecture (ISCA) (2006) Google Scholar
  20. 20.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: USENIX Workshop on Power Aware Computing and Systems in Conjunction with OSDI, San Diego, December 2008 Google Scholar
  21. 21.
    Wang, L., von Laszewski, G., Kunze, M., Tao, J.: Cloud computing: a perspective study. New Gener. Comput. 28(2), 137–146 (2010). doi: 10.1007/s00354-008-0081-5 zbMATHCrossRefGoogle Scholar
  22. 22.
    Wang, L., Khan, S.U., Dayal, J.: Thermal aware workload placement with task-temperature profiles in a data center. J. Supercomput. 1–24 (2011). doi: 10.1007/s11227-011-0635-zAa
  23. 23.
    Wang, L., von Laszewski, G., Huang, F., Dayal, J.: Task scheduling with ANN based temperature prediction in a data center: a simulation based study. Eng. Comput. Int. J. Simul.-Based Eng. doi: 10.1007/s00366-011-0211-4
  24. 24.
    Wang, X., Chen, M., Lefurgy, C., Keller, T.W.: SHIP: scalable hierarchical power control for large-scale data centers. In: PACT (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of EECSUniversity of Central FloridaOrlandoUSA

Personalised recommendations