Cluster Computing

, Volume 14, Issue 4, pp 433–444 | Cite as

Micro-economics based resource allocation in Grid-Federation environment

  • Saeed Parsa
  • Fereshteh-Azadi Parand
  • Hamidreza Navidi
Article

Abstract

A Grid-Federation environment is composed of a collection of autonomous and selfish distributed cluster resource managers. These selfish managers participate in Grid-Federation to share their resources. Market models could be used to motivate the self-interested participants to share their resources. In this paper, firstly, a market for resource exchange in grid federation environment is established. Then, in order that the market reaches a Walrasian equilibrium, a computationally tractable mechanism is proposed. A Walrasian equilibrium problem consists of finding a set of prices and allocations of resources in such a way that the cluster resource managers could maximize their utilities and the market clears. Market clears when the resource supply equals to the demand. We show that in a Walrasian equilibrium, the Grid Federation market reaches an efficient resource allocation.

Keywords

Grid-Federation Walrasian equilibrium Efficient resource allocation Market clearing price 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and its implementation in the Nimrod-G resource broker. Future Gener. Comput. Syst. 18(8), 1061–1074 (2002) MATHCrossRefGoogle Scholar
  2. 2.
    Buyya, R.: Economic-based distributed resource management and scheduling for grid computing. Ph.D. thesis, Monash Univ., Australia, April 2002 Google Scholar
  3. 3.
    Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr. Comput., Pract. Exp. 14(13–15), 1175–1220 (2002) MATHCrossRefGoogle Scholar
  4. 4.
    Buyya, R., Vazhkudai, S.: Compute power market: towards a market oriented grid. In: The First IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGrid (2001) Google Scholar
  5. 5.
    Buyya, R., Stockinger, H., Giddy, J., Abramson, D.: Economic models for management of resources in peer-to-peer and grid computing. In: Proceedings of International Conference on Commercial Applications for High-Performance Computing, August 20–24. SPIE Press, Denver (2001) Google Scholar
  6. 6.
    Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource management and scheduling in grid computing. Concurr. Comput., Pract. Exp. 14(13–15), 1507–1542 (2002) MATHCrossRefGoogle Scholar
  7. 7.
    Chun, B., Culler, D.: Market-based proportional resource sharing for clusters. Technical Report, University of California, Berkeley, September 1999 Google Scholar
  8. 8.
    Chunlin, L., Layuan, L., Lu, Z.: Utility driven dynamic resource allocation using competitive markets in computational grid. Adv. Eng. Softw. 36(6), 425–434 (2005) CrossRefGoogle Scholar
  9. 9.
    Chunlin, L., Layuan, L.: A distributed utility-based two level market solution for optimal resource scheduling in computational grid. Parallel Comput. 31(3–4), 332–351 (2005) CrossRefGoogle Scholar
  10. 10.
    Gradwell, P., Padget, J.: Distributed combinatorial resource scheduling. In: First International Workshop on Smart Grid Technologies, pp. 17–32 (2005) Google Scholar
  11. 11.
    Huhns, M., Stephens, L.: Multiagent systems and societies of agents. In: Multi agent Systems. MIT Press, New York (2000) Google Scholar
  12. 12.
    Izakian, H., Abraham, A., Ladani, B.T.: An auction method for resource allocation in computational grids. Future Gener. Comp. Syst. 26. doi:10.1016/j.future.2009.08.010
  13. 13.
    Khachiyan, L.: A polynomial algorithmic linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1097 (1979) MathSciNetMATHGoogle Scholar
  14. 14.
    Kumar Garg, S., Buyya, R., Siegel, H.J.: Time and cost trade-off management for scheduling parallel applications on utility grids. Future Gener. Comput. Syst., 26(8), 1344–1355 (2010) CrossRefGoogle Scholar
  15. 15.
    Lazar, A., Semret, N.: Auctions for network resource sharing. TR 468-97-02, Columbia University (1997) Google Scholar
  16. 16.
    Lai, K., Huberman, B.A., Fine, L.: Tycoon: a distributed market-based resource allocation system. Technical Report arXiv:cs.DC/0412038, 8 December 2004
  17. 17.
    Li, L., Liu, Y., Liu, K.M., Xiao-Lei, M., Ming, Y.: Pricing in combinatorial double auction-based grid allocation model. J. China Univ. Posts Telecommun. doi:10.1016/S1005-8885(08)60228-9
  18. 18.
    Mohammad Khanli, L., Analoui, M.: An approach to grid resource selection and fault management based on ECA rules. Future Gener. Comput. Syst. 24(4), 296–316 (2008) CrossRefGoogle Scholar
  19. 19.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) MATHCrossRefGoogle Scholar
  20. 20.
    Ranjan, R., Harwood, A., Buyya, R.: A case for cooperative and incentive-based federation of distributed clusters. Future Gener. Comput. Syst. 24(4), 280–295 (2008) CrossRefGoogle Scholar
  21. 21.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135(1–2), 1–54 (2002) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services—a multi-attribute combinatorial approach. Eur. J. Oper. Res. 187(3), 943–961 (2008) MATHCrossRefGoogle Scholar
  23. 23.
    Smith, R., David, R.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Comput. C 29(12), 1104–1113 (1980) CrossRefGoogle Scholar
  24. 24.
    Stonebraker, M., Devine, R., Kornacker, M., Litwin, W., Pfeffer, A., Sah, A., Staelin, C.: An economic paradigm for queryprocessing and data migration in Mariposa. In: Proceedings of 3rd International Conference on Parallel and Distributed Information Systems (1994) Google Scholar
  25. 25.
    Stratford, N., Mortier, R.: An economic approach to adaptive resource management. In: 7th Workshop on Hot Topics in Operating Systems, pp. 142–147 (1999) CrossRefGoogle Scholar
  26. 26.
    Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing substitutable grid resources. Future Gener. Comput. Syst. 23(5), 688–701 (2007) CrossRefGoogle Scholar
  27. 27.
    Thysebaert, P., Volckaert, B., Leenheer, M.D., Turck, F.De., Dhoedt, B., Demeester, P.: Dimensioning and on-line scheduling in Lambda Grids using divisible load concepts. J. Supercomput. 42(1), 59–82 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Saeed Parsa
    • 1
  • Fereshteh-Azadi Parand
    • 1
  • Hamidreza Navidi
    • 2
  1. 1.Department of Computer EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of MathematicsShahed UniversityTehranIran

Personalised recommendations