Cluster Computing

, Volume 11, Issue 3, pp 299–311 | Cite as

Translating Service Level Objectives to lower level policies for multi-tier services

  • Yuan Chen
  • Subu Iyer
  • Xue Liu
  • Dejan Milojicic
  • Akhil Sahai
Article

Abstract

Service providers and their customers agree on certain quality of service guarantees through Service Level Agreements (SLA). An SLA contains one or more Service Level Objectives (SLO)s that describe the agreed-upon quality requirements at the service level. Translating these SLOs into lower-level policies that can then be used for design and monitoring purposes is a difficult problem. Usually domain experts are involved in this translation that often necessitates application of domain knowledge to this problem. In this article, we propose an approach that combines performance modeling with regression analysis to solve this problem. We demonstrate that our approach is practical and that it can be applied to different n-tier services. Our experiments show that for a typical 3-tier e-commerce application in a virtualized environment, the SLA can be met while improving CPU utilization by up to 3 times.

Keywords

SLA management Performance modeling Multi-tier application Queueing model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barham, P., et al.: Xen and the art of virtualization. In: Proc. of the Nineteenth ACM SOSP, 2003 Google Scholar
  2. 2.
    Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: A comparison of software architectures for E-business applications. In: Proc. of 4th Middleware Conference, Rio de Janeiro, Brazil, June 2003 Google Scholar
  3. 3.
    Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation for shared data centers using online measurements. In: Proc. of International Workshop on Quality of Service, June 2003 Google Scholar
  4. 4.
    Cockcroft, A., Walker, B.: Capacity Planning for Internet Services. Sun Press, Cleveland (2001) Google Scholar
  5. 5.
    Council, T.P.C.: TPC-W. http://www.tpc.org/tpcw
  6. 6.
    Doyle, R., Chase, J., Asad, O., Jin, W., Vahdat, A.: Model-based resource provisioning in a Web service utility. In: Proc. of the 4th USENIX USITS, Mar. 2003 Google Scholar
  7. 7.
    Edward, D., Lazowska, J., Zahorjan, G., Graham, S., Sevcik, K.C.: Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Englewood Cliffs (1984) Google Scholar
  8. 8.
    Gennaro, C., King, P.J.B.: Parallelising the mean value analysis algorithm. Simulation 72(3), 148 (1999). doi:10.1177/003754979907200304 CrossRefGoogle Scholar
  9. 9.
    Graupner, S., Kotov, V., Trinks, H.: Resource-sharing and service deployment in virtual data centers. In: Proc. of the 22nd ICDCS, pp. 666–674, July 2002 Google Scholar
  10. 10.
    Kelley, T.: Detecting performance anomalies in global applications. In: Proc. of Second USENIX Workshop on Real, Large Distributed Systems (WORLDS 2005), 2005 Google Scholar
  11. 11.
    Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A., Yousse, A.: Performance management for cluster based Web services. In: Proc. of IFIP/IEEE 8th IM, 2003 Google Scholar
  12. 12.
    Liu, X., Heo, J., Sha, L.: Modeling 3-tiered Web applications. In: Proc. of 13th IEEE MASCOTS, Atlanta, Georgia, 2005 Google Scholar
  13. 13.
    Menasce, D., Almeida, V.: Capacity Planning for Web Services: Metrics, Models, and Methods. Prentice-Hall PTR, Englewood Cliffs (2001) Google Scholar
  14. 14.
    Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queueing networks. J. ACM 27, 313–322 (1980). doi:10.1145/322186.322195 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    RUBiS: Rice University Bidding System. http://www.cs.rice.edu/CS/Systems/DynaServer/rubis
  16. 16.
    Seidmann, A., Schweitzer, P.J., Shalev-Oren, S.: Computerized closed queueing network models of flexible manufacturing systems. Large Scale Syst. 12, 91–107 (1987) MATHMathSciNetGoogle Scholar
  17. 17.
    Slothouber, L.: A model of Web server performance. In: Proc. of Int’l World Wide Web Conference, 1996 Google Scholar
  18. 18.
    Stewart, C., Shen, K.: Performance modeling and system management for multi-component online services. In: Proc. of USENIX NSDI, 2005 Google Scholar
  19. 19.
    Stewart, C., Kelly, T., Zhang, A.: Exploiting nonstationarity for performance prediction. In: Proc. of EuroSys, 2007 Google Scholar
  20. 20.
    Urgaonkar, B., Shenoy, P.: Cataclysm. Handling extreme overloads in Internet services. In: Proc. of ACM SIGACT-SIGOPS PODC, July 2004 Google Scholar
  21. 21.
    Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical model for multi-tier Internet services and its applications. In: Proc. of ACM SIGMETRICS, June 2005 Google Scholar
  22. 22.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, O.P.: Dynamic provisioning of multi-tier Internet applications. In: Proc. of IEEE ICAC, June 2005 Google Scholar
  23. 23.
    VMware, Inc., VMware ESX Server User’s Manual Version 1.5, Palo Alto, CA, April 2002 Google Scholar
  24. 24.
    Yaikhom, G., Cole, M., Gilmore, S.: Combining measurement and stochastic modelling to enhance scheduling decisions for a parallel mean value analysis algorithm. In: Proc. of International Conference on Computational Science (ICCS 2006), LNCS. Springer, Berlin (2006) Google Scholar
  25. 25.
    Zhang, A., Santos, P., Beyer, D., Tang, H.: Optimal server resource allocation using an open queueing network model of response time. HP Labs Technical Report, HPL-2002-301 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yuan Chen
    • 1
  • Subu Iyer
    • 1
  • Xue Liu
    • 2
  • Dejan Milojicic
    • 1
  • Akhil Sahai
    • 1
  1. 1.Hewlett Packard LabsPalo AltoUSA
  2. 2.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations