Skip to main content

Advertisement

Log in

Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All data were supported in manuscript and supplementary materials.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Bridgewater JA, Pugh SA, Maishman T, Eminton Z, Mellor J, Whitehead A et al (2020) Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis (New EPOC): long-term results of a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 21:398–411. https://doi.org/10.1016/S1470-2045(19)30798-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Segelov E, Waring P, Desai J, Wilson K, Val G, Subotheni T et al (2016) ICECREAM: randomised phase II study of cetuximab alone or in combination with irinotecan in patients with metastatic colorectal cancer with either KRAS, NRAS, BRAF and PI3KCA wild type, or G13D mutated tumours. BMC Cancer 16:339. https://doi.org/10.1186/s12885-016-2389-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaryouh H, Pauw ID, Baysal H, Pauwels P, Peeters M, Vermorken JB et al (2021) The role of Akt in acquired cetuximab resistant head and neck squamous cell carcinoma: an in vitro study on a novel combination strategy. Front Oncol 11:697967. https://doi.org/10.3389/fonc.2021.697967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Celikok GH, Sagirli PA, Ulbegi GA, Can A (2021) Identification of AKT1/β-catenin mutations conferring cetuximab and chemotherapeutic drug resistance in colorectal cancer treatment. Oncol Lett 21:209. https://doi.org/10.3892/ol.2021.12470

    Article  CAS  Google Scholar 

  6. Casas-Selves M (2012) Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res 72:4154–4164. https://doi.org/10.1158/0008-5472.CAN-11-2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagen T, Vidal-Puig A (2002) Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochem Biophys Res Commun 294:324–328. https://doi.org/10.1016/S0006-291X(02)00485-0

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Yang X, Wu J, Ye S, Gong J, Cheng W et al (2023) Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov 9:26. https://doi.org/10.1038/s41421-022-00515-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwai S, Yonekawa A, Harada C, Hamada M, Katagiri W, Nakazawa M (2010) Involvement of the Wnt-b-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol 37:1095–1103. https://doi.org/10.3892/ijo_00000761

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y, Ge C, Fang D, Wei W, Li L, Wei Q et al (2022) NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 22:119. https://doi.org/10.1186/s12935-022-02538-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li W, Pei S, Zhang X, Qi D, Zhang W, Dou Y et al (2022) Cinobufotalin inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells through down-regulate β-catenin in vitro and in vivo. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2022.174886

    Article  PubMed  Google Scholar 

  13. Dunn EF, Iida M, Myers RA, Campbell DA, Hintz KA, Armstrong EA et al (2011) Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene 30:561–574. https://doi.org/10.1038/onc.2010.430

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Liu Y, Wang Z, Han Y, Tian YH, Zhang GS et al (2015) Platycodin D isolated from the aerial parts of Platycodon grandiflorum protects alcohol-induced liver injury in mice. Food Funct 6:1418–1427. https://doi.org/10.1039/c5fo00094g

    Article  CAS  PubMed  Google Scholar 

  15. Nyakudya E, Jeong JH, Lee NK, Jeong YS (2014) Platycosides from the roots of platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 19:59–68. https://doi.org/10.3746/pnf.2014.19.2.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu Z, Song W, Zhang Y, Wu C, Zhu M, Wang H et al (2021) Combined anti-cancer effects of Platycodin D and Sorafenib on androgen-independent and PTEN-deficient prostate cancer. Front Oncol 11:648985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen D, Chen T, Guo Y, Wang C, Dong L, Lu C (2021) Suppressive effect of platycodin D on bladder cancer through microRNA-129–5p-mediated PABPC1/PI3K/AKT axis inactivation. Braz J Med Biol Res 54:e10222. https://doi.org/10.1590/1414-431X202010222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertrand V, Couturier-Turpin MH, Louvel A, Panis Y, Couturier D (1999) Relation between cytogenetic characteristics of two human colonic adenocarcinoma cell lines and their ability to grow locally or metastasize or both: an experimental study in the nude mouse. Cancer Genet Cytogenet 113:36–44. https://doi.org/10.1016/s0165-4608(98)00194-0

    Article  CAS  PubMed  Google Scholar 

  19. Lian P, Braber S, Varasteh S, Wichers HJ, Folkerts G (2011) Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci Rep 11:13186. https://doi.org/10.1038/s41598-021-92574-5

    Article  CAS  Google Scholar 

  20. Luo J, Hong Y, Lu Y, Qiu S, Chaganty B, Zhang L et al (2017) Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett 384:39–49. https://doi.org/10.1016/j.canlet.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  21. El Hallal R, Lyu N, Wang Y (2021) Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules 26:567. https://doi.org/10.3390/molecules26030567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang R, Li G, Wang Z, Hu H, Zeng F, Zhang K et al (2020) Identification of an ATP metabolism-related signature associated with prognosis and immune microenvironment in gliomas. Cancer Sci 111:2325–2335. https://doi.org/10.1111/cas.14484

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fu C, Liu Y, Leng J, Zhang J, He Y, Chen C et al (2018) Platycodin D protects acetaminophen-induced hepatotoxicity by inhibiting hepatocyte MAPK pathway and apoptosis in C57BL/6J mice. Biomed Pharmacother 107:867–877. https://doi.org/10.1016/j.biopha.2018.08.082

    Article  CAS  PubMed  Google Scholar 

  24. Choi J, Han Y, Kim Y, Jin S, Lee G, Jeong H et al (2017) Platycodin D inhibits osteoclastogenesis by repressing the NFATc1 and MAPK signaling pathway. J Cell Biochem 118:860–868. https://doi.org/10.1002/jcb.25763

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Hu B, Li Y, Deng T, Xu Y, Lei J et al (2020) Binding of Avibirnavirus VP3 to the PIK3C3-PDPK1 complex inhibits autophagy by activating the AKT-MTOR pathway. Autophagy 16:1697–1710. https://doi.org/10.1080/15548627.2019.1704118

    Article  CAS  PubMed  Google Scholar 

  26. Choi M (2015) Inactivating frameshift mutation of AKT1S1, an mTOR inhibitory gene, in colorectal cancers. Scand J Gastroenterol 50:503–504. https://doi.org/10.3109/00365521.2014.971341

    Article  PubMed  Google Scholar 

  27. Amato VD, Rosa R, Amato CD, Formisano L, Marciano R, Nappi L et al (2014) The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models. Br J Cancer 110:2887–2895. https://doi.org/10.1038/bjc.2014.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Izumi H, Wang Z, Goto Y, Ando T, Wu X, Zhang X et al (2020) Pathway-specific genome editing of PI3K/mTOR tumor suppressor genes reveals that PTEN loss contributes to cetuximab resistance in head and neck cancer. Mol Cancer Ther 19:1562–1571. https://doi.org/10.1158/1535-7163.MCT-19-1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alalem M, Ray A, Ray BK (2016) Metformin induces degradation of mTOR protein in breast cancer cells. Cancer Med 5:3194–3204. https://doi.org/10.1002/cam4.896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cubelos B (2013) R-RAS2 overexpression in tumors of the human central nervous system. Mol Cancer 12:127. https://doi.org/10.1186/1476-4598-12-127

    Article  PubMed  PubMed Central  Google Scholar 

  31. Su W, Mukherjee R, Yaeger R, Son J, Xu J, Na N et al (2022) ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol Cell 82:2443–57.e7. https://doi.org/10.1016/j.molcel.2022.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang H, Ke J, Guo Q, Nampoukime KB, Yang P, Ma K (2018) Long non-coding RNA CRNDE promotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis. J Cell Mol Med 22:5862–5876. https://doi.org/10.1111/jcmm.13856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang R, Jiheng Xu, Hua X et al (2020) Overexpressed miR-200a promotes bladder cancer invasion through direct regulating Dicer/miR-16/JNK2/MMP-2 axis. Oncogene 39(9):1983–1996. https://doi.org/10.1038/s41388-019-1120-z

    Article  CAS  PubMed  Google Scholar 

  34. Sankpal NV, Brown TC, Fleming TP, Herndon JM, Amaravati AA, Loynd AN et al (2021) Cancer-associated mutations reveal a novel role for EpCAM as an inhibitor of cathepsin-L and tumor cell invasion. BMC Cancer 21:541. https://doi.org/10.1186/s12885-021-08239-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao A, Qin H, Sun M, Tang M, Mei J, Ma K et al (2021) Chemical conversion of human epidermal stem cells into intestinal goblet cells for modeling mucus-microbe interaction and therapy. Sci Adv 7:eabb2213. https://doi.org/10.1126/sciadv.abb2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293. https://doi.org/10.1186/1471-2105-15-293

    Article  Google Scholar 

  37. Tianzhi W, Erqiang H, Shuangbin X, Meijun C, Pingfan G, Zehan D et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  CAS  Google Scholar 

  38. Raivo K (2019) pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap.

  39. Shi G, Zheng X, Wu X, Wang S, Wang Y, Xing F (2019) All-trans retinoic acid reverses epithelial-mesenchymal transition in paclitaxel-resistant cells by inhibiting nuclear factor kappa B and upregulating gap junctions. Cancer Sci 110:379–388. https://doi.org/10.1111/cas.13855

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Wang W, Wu X, Li C, Huang Y, Zhou H et al (2020) Resveratrol sensitizes colorectal cancer cells to cetuximab by connexin 43 upregulation-induced Akt inhibition. Front Oncol 10:383. https://doi.org/10.3389/fonc.2020.00383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shanghai Bioprofile Technology Company, Ltd for providing technical help in label-free quantitative proteomics analyses.

Funding

This work was partially supported by the Natural Science Foundation of China Grant number 81972826 and 12174203.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, XW and YW; investigation, YL (Yongming Lv), WW, YL. (Yanfei Liu), BY, TC, ZF and JL; writing—original draft preparation, XW and YW; writing—review and editing, XW and YW All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xuehua Wan or Yijia Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Institutional review board statement

All animal experiments complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 8023, revised 1978) and was approved by the Ethics Committee of Tianjin Union Medical Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, W., Liu, Y. et al. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 40, 339–356 (2023). https://doi.org/10.1007/s10585-023-10218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-023-10218-6

Keywords

Navigation