Skip to main content

Advertisement

Log in

Perfusion defects in non-enlarged metastatic lymph nodes using vessel wall magnetic resonance imaging: Detection performance and diagnostic value

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

A perfusion defect (PD) in non-enlarged lymph nodes (LNs) of oral squamous cell carcinoma (OSCC) is the most reliable radiological criterion for the diagnosis of metastasis. However, conventional contrast-enhanced (CE) T1 weighted images using turbo spin echo (TSE) sequence is limited in detecting PD in non-enlarged LNs due to flow artifacts from cervical blood vessels. Vessel wall (VW) MR imaging with blood vessel flow suppression and high spatial resolution may provide new insights into the detection of PD. However, there are no reports in the literature on the usefulness of VW MR imaging for the diagnosis of LN metastasis. It is demonstrated that PD of non-enlarged LNs in CE VR MR imaging of OSCC patients is useful for the diagnosis of metastatic LNs. VW MR imaging was significantly more sensitive in detecting PD of non-enlarged metastatic LNs than conventional TSE imaging on visual evaluation. Furthermore, it was found that the image contrast between PD and surrounding intranodal tissue in CE VW MR images was higher than that in conventional CE TSE images. In the correlation between imaging and histopathological findings of metastatic LNs, all LNs that exhibited PD on CE VW MR images were at an advanced histopathological metastatic stage. The pathology of PD was necrotic tissue with keratinization. The results indicated that PD in CE VW imaging is useful in diagnosing non-enlarged LNs at an advanced metastasis stage. The addition of VW MR imaging to conventional MR examination achieves higher diagnostic performance for non-enlarged metastatic LNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

PD:

Perfusion defect

LN:

Lymph node

OSCC:

Oral squamous cell carcinoma

MR:

Magnetic resonance

TSE:

Turbo spin echo

CE:

Contrast enhanced

VW:

Vessel wall

MSDE-VISTA:

Motion-sensitized driven equilibrium-volume isotropic turbo spin echo acquisition

CT:

Computed tomography

2D:

Two-dimensional

3D:

Three-dimensional

T1W:

T1-weighted

T2W:

T2-weighted

SNR:

Signal-to-noise ratio

References

  1. Baik SH, Seo JW, Kim JH, Lee SK, Choi EC, Kim J (2019) Prognostic value of cervical nodal necrosis observed in preoperative CT and MRI of patients with tongue squamous cell carcinoma and cervical node metastases: a retrospective study. AJR 213:437–443. https://doi.org/10.2214/ajr.18.20405

    Article  PubMed  Google Scholar 

  2. van den Brekel MW, Stel HV, Castelijns JA, Nauta JJ, van der Waal I, Valk J, Meyer CJ, Snow GB (1990) Cervical lymph node metastasis: assessment of radiographic criteria. Radiology 177:379–384. https://doi.org/10.1148/radiology.177.2.2217772

    Article  PubMed  Google Scholar 

  3. King AD, Tse GMK, Ahuja AT, Yuen EHY, Vlantis AC, To EWH, van Hasselt AC (2004) Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging and US. Radiology 230:720–726. https://doi.org/10.1148/radiol.2303030157

    Article  PubMed  Google Scholar 

  4. Morimoto Y, Kurokawa H, Tanaka T, Yamashita Y, Kito S, Okabe S, Takahashi T, Ohba T (2006) Correlation between the incidence of central nodal necrosis in cervical lymph node metastasis and the extent of differentiation in oral squamous cell carcinoma. Dentomaxillofacial Rad 35:18–23. https://doi.org/10.1259/dmfr/24536918

    Article  CAS  Google Scholar 

  5. Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MRI criteria and differential diagnosis. Am J Roentgeno 158:961–969. https://doi.org/10.2214/ajr.158.5.1566697

    Article  CAS  Google Scholar 

  6. Yamaki T, Sukhbaatar A, Mishra R, Kikuchi R, Sakamoto M, Mori S, Kodama T (2021) Characterrizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging. Clin Exp Metastasis 38:539–549. https://doi.org/10.1007/s10585-021-10127-6

    Article  PubMed  Google Scholar 

  7. Brown M, Assen FP, Leithner A, Abe J, Scachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, Kerjaschki D (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359(6382):1408–1411. https://doi.org/10.1126/science.aal3662

    Article  CAS  PubMed  Google Scholar 

  8. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EF, Jores D, Chin SM, Kitahara S, Bouta EM, Chang J, Beech E, Jeong HS, Carroll MC, Taghian AG, Padera TP (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359(6382):1403–1407. https://doi.org/10.1126/science.aal3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kodama T, Mori S, Nose M (2018) Tumor cell invasion from the marginal sinus into extranodal veins during early-stage lymph node metastasis can be a starting point for hematogenous metastasis. J Cancer Metastasis Treat 4:56

    Article  CAS  Google Scholar 

  10. Takeda K, Mori S, Kodama T (2017) Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice. J Immunol Methods 445:1–9

    Article  CAS  Google Scholar 

  11. Shao L et al (2015) Communication between lymphatic and venous systems in mice. J Immunol Methods 424:100–105

    Article  CAS  Google Scholar 

  12. Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C (2007) Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 58:973–981

    Article  Google Scholar 

  13. Nagahara S, Nagahara M, Obara M, Kondo R, Minagawa N, Sato S, Sato S, Mouri W, Saito S, Kayama T (2016) Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign ruptured aneurysm? Clin Neuroradiol 26:277–283

    Article  Google Scholar 

  14. Nagano E, Yoshiura T, Hiwatashi A, Obara M, Yamashita K, Kamano H, Takayama Y, Kobayashi K, Honda H (2011) 3D turbo spin-echo sequence with motion-sensitized driven-equilibrium preparation for detection of brain metastases on 3T MRI imaging. AJNR Am J Neuroradiol 32(4):664–670

    Article  Google Scholar 

  15. Brierley JD, Gospodarowicz MK, Wittekind C (2017) TNM classification of malignant tumours, 8th edn. Wiley, Chichester, pp 17–21

    Google Scholar 

  16. Curtin HD, Ishwaran H, Mancuso AA, Dalley RW, Caudry DJ, McNeil BJ (1998) Comparison of CT and MR imaging in staging of neck metastasis. Radiology 207:123–130. https://doi.org/10.1148/radiology.207.1.9530307

    Article  CAS  PubMed  Google Scholar 

  17. Friedman M, Robert N, Kirshenbaum GL, Colombo J (1993) Nodal size of metastatic squamous cell carcinoma of the neck. Laryngoscope 103(8):854–856

    Article  CAS  Google Scholar 

  18. Tajima Y, Fudano K, Ito K, Aoki T (2013) Fast and robust 3D correspondence matching and its application to volume registration. IEICE Trans Inf and Syst E96-D(4):826–834. https://doi.org/10.1587/transinf.E96.D.826

    Article  Google Scholar 

  19. Don DM, Anzai Y, Lufkin RB, Fu YS, Calcaterra TC (1995) Evaluation of cervical lymph node metastases in squamous cell carcinoma of head and neck. Laryngoscope 105:669–674. https://doi.org/10.1288/00005537-199507000-00001

    Article  CAS  PubMed  Google Scholar 

  20. Chong VF, Fan YF, Khoo JB (1996) MRI features of cervical nodal necrosis in metastatic disease. Clin Radiol 51:103–109. https://doi.org/10.1016/s0009-9260(96)80265-0

    Article  CAS  PubMed  Google Scholar 

  21. Younsem DM, Som PM, Hackney DB, Schwaibold F, Hendrix RA (1992) Central nodal necrosis and extracapsular neoplastic spread in cervical lymph nodes: MR imaging versus CT. Radiology 182:753–759. https://doi.org/10.1148/radiology.182.3.1535890

    Article  Google Scholar 

  22. Sumi M, Ohki M, Nakamura T (2001) Comparison of sonography and CT for differentiating benign and malignant cervical lymph nodes in patients with squamous cell carcinoma of the head and neck. Am J Roentgenol 176:19–24. https://doi.org/10.2214/ajr.176.4.1761019

    Article  Google Scholar 

  23. Steinkamp HJ, Cornehl M, Hosten N, Pegios W, Vogl T, Felix R (1995) Cervical lymphadenopathy: ratio of long-to short-axis diameter as a predictor of malignancy. Br J Radiol 68:266–270. https://doi.org/10.1259/0007-1285-68-807-266

    Article  CAS  PubMed  Google Scholar 

  24. Vandecaveye V, De Keyzer F, Poorten VV, Dirix P, Verbeken E, Nuyts S, Hermans R (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251:134–146. https://doi.org/10.1148/radiol.2511080128

    Article  PubMed  Google Scholar 

  25. Abdel Razek KAA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477. https://doi.org/10.1007/s00330-005-0133-x

    Article  PubMed  Google Scholar 

  26. De Bondt RBJ, Hoeberigs MC, Nelemans PJ, Desero WMLLG, Peutz-Kootstra C, Kremer B, Beets-Tan RGH (2009) Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Head and Neck Radiol 51:183–192. https://doi.org/10.1007/s00234-008-0487-2

    Article  Google Scholar 

  27. Holzapfel K, Duetsch S, Fauser C, Eiber M, Rummeny EJ, Gaa J (2009) Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 72:381–387. https://doi.org/10.1016/j.ejrad.2008.09.034

    Article  PubMed  Google Scholar 

  28. Perrone A, Guerrisi P, Izzo L, D’Angeli I, Sassi S, Lo Mele L, Marini M, Mazza D, Marini M (2011) Diffusion-weighted MRI in cervical lymph nodes: differentiation between benign and malignant lesions. Eur J Radiol 77:281–286. https://doi.org/10.1016/j.ejrad.2009.07.039

    Article  PubMed  Google Scholar 

  29. Jansen JFA, Stambuk HE, Koutcher JA, Shukla-Dave A (2010) Non-gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study. Am J Neuroradiol 31:741–748. https://doi.org/10.3174/ajnr.A1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim HK, Lee JH, Beak HJ, Kim N, Lee H, Park JW, Kim SY, Cho KJ, Beak JH (2014) Is diffusion-weighted MRI useful for differentiation of small non-necrotic cervical lymph nodes in patients with head and neck malignancies? Korean J Radiol 15:810–816. https://doi.org/10.3348/kjr.2014.15.6.810

    Article  PubMed  PubMed Central  Google Scholar 

  31. Burusapat C, Jarungroongruangchai W, Charoenptakchai M (2015) Prognostic factors of cervical node status in head and neck squamous cell carcinoma. World J of Surg Oncol 13(1):51. https://doi.org/10.1186/s12957-015-0460-6

    Article  Google Scholar 

  32. Broglie MA, Haerle SK, Huber GF, Haile SR, Stoeckli SJ (2013) Occult metastases detected by sentinel node biopsy in patients with early oral and oropharyngeal squamous cell carcinomas: impact on survival. Head Neck 35:660–666. https://doi.org/10.1002/hed.23017

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by JSPS KAKENHI Grants 18H03544 (M.S.), 20H00655 (T.K.), and 21K18319(T.K.). We thank Hideki Ota, Tatsuo Nagasaka, and Ariunbuyan Sukhbaatar for their excellent technical support. In addition, we thank  Mika Watanabe for her histopathological support.

Author information

Authors and Affiliations

Authors

Contributions

SM interpreted all of the data and supervised the project. KI and IM performed the imaging analyses and statistical analysis. IK and AT analyzed the imaging data using a developed proprietary volume registration method. OT, KY and MS performed neck dissection and the pathological analysis. ID and MT designed the new magnetic resonance imaging methodologies and interpreted the imaging data. KT interpreted all of the data and supervised the project.

Corresponding author

Correspondence to Maya Sakamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, M., Kojima, I., Iikubo, M. et al. Perfusion defects in non-enlarged metastatic lymph nodes using vessel wall magnetic resonance imaging: Detection performance and diagnostic value. Clin Exp Metastasis 39, 421–431 (2022). https://doi.org/10.1007/s10585-022-10147-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-022-10147-w

Keywords

Navigation