Skip to main content

Advertisement

Log in

Bringing precision oncology to cellular resolution with single-cell genomics

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Single-cell sequencing technologies have undergone rapid development and adoption by the scientific community in the past 5 years, fueling discoveries about the etiology, pathogenesis, and treatment responsiveness of individual tumor cells within cancer ecosystems. Most of the advancements in our understanding of cancer with these new technologies have focused on basic tumor biology. However, the knowledge produced by these and other studies are beginning to provide biomarkers and drug targets for clinically-relevant subpopulations within a tumor, creating opportunities for the development of biologically-informed, clone-specific combination treatment strategies. Here we provide an overview of the development of the field of single-cell cancer sequencing and provide a roadmap for shepherding these technologies from research tools to diagnostic instruments that provide high-resolution, treatment-directing details of tumors to clinical oncologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TCGA:

The cancer genome atlas

ICGC:

International cancer genome consortium

TARGET:

Therapeutically applicable research to generate effective treatments

PCR:

Polymerase chain reaction

scRNA-seq:

Single cell RNA sequencing

MDA:

Multiple displacement amplification

ATAC-Seq:

Assay for transposase-accessible chromatin with high-throughput sequencing

References

  1. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  2. Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85(2):142–154

    Article  CAS  Google Scholar 

  3. Consortium IT (2020) Pan-cancer analysis of whole genomes. Nature 578(7793):82–93

    Article  Google Scholar 

  4. Ma X et al (2018) Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555(7696):371–376

    Article  CAS  Google Scholar 

  5. Presley CJ et al (2018) Association of broad-based genomic sequencing with survival among patients with advanced non-small cell lung cancer in the community oncology setting. JAMA 320(5):469–477

    Article  CAS  Google Scholar 

  6. Rosenthal R et al (2017) Deciphering genetic intratumor heterogeneity and its impact on cancer evolution. Annu Rev Cancer Biol 1:223–240

    Article  Google Scholar 

  7. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94

    Article  CAS  Google Scholar 

  8. Lee D, Park Y, Kim S (2021) Towards multi-omics characterization of tumor heterogeneity: a comprehensive review of statistical and machine learning approaches. Brief Bioinform 22(3):bbaa188

    Article  Google Scholar 

  9. Zhang Q et al (2019) Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut. https://doi.org/10.1136/gutjnl-2019-318912

    Article  PubMed  Google Scholar 

  10. Liu J, Dang H, Wang XW (2018) The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med 50(1):e416–e416

    Article  Google Scholar 

  11. Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20(5):257–272

    Article  CAS  Google Scholar 

  12. Linnarsson S, Teichmann SA (2016) Single-cell genomics: coming of age. Springer, Berlin

    Google Scholar 

  13. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188

    Article  CAS  Google Scholar 

  14. Luquette LJ et al (2019) Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  15. Sokolenko AP, Imyanitov EN (2018) Molecular diagnostics in clinical oncology. Front Mol Biosci 5:76

    Article  Google Scholar 

  16. Tang X et al (2019) The single-cell sequencing: new developments and medical applications. Cell Biosci 9(1):1–9

    Article  Google Scholar 

  17. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  Google Scholar 

  18. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  Google Scholar 

  19. Picelli S et al (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24(12):2033–2040

    Article  CAS  Google Scholar 

  20. Pellegrino M et al (2018) High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res 28(9):1345–1352

    Article  CAS  Google Scholar 

  21. Huang L et al (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102

    Article  CAS  Google Scholar 

  22. Dean FB et al (2002) Comprehensive human genome amplification using multiple displacement amplification.  Proc Natl Acad Sci USA 99(8):5261–5266

    Article  CAS  Google Scholar 

  23. Long N et al (2020) Recent advances and application in whole-genome multiple displacement amplification. Quant Biol 8:1–16

    Article  CAS  Google Scholar 

  24. Gonzalez-Pena V et al (2021) Accurate genomic variant detection in single cells with primary template-directed amplification. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2024176118

    Article  PubMed  PubMed Central  Google Scholar 

  25. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500

    Article  CAS  Google Scholar 

  26. Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369

    Article  Google Scholar 

  27. Buenrostro JD et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome‐wide. Curr Protoc Mol Biol 109(1):21. 1-21.29. 9.

    Article  Google Scholar 

  28. Li Y, Tollefsbol TO (2011) DNA methylation detection: bisulfite genomic sequencing analysis. In: Epigenetics protocols. Springer, Berlin, pp 11–21

    Google Scholar 

  29. Kashima Y et al (2020) Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med 52(9):1419–1427

    Article  CAS  Google Scholar 

  30. Robinson WH (2015) Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery. Nat Rev Rheumatol 11(3):171–182

    Article  CAS  Google Scholar 

  31. Van der Auwera GA, O’Connor BD (2020) Genomics in the cloud: using Docker, GATK, and WDL in Terra. O’Reilly Media, Sebastopol

    Google Scholar 

  32. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50(8):96

    Article  Google Scholar 

  33. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  CAS  Google Scholar 

  34. Guo H et al (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135

    Article  CAS  Google Scholar 

  35. Melchor L et al (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28(8):1705–1715

    Article  CAS  Google Scholar 

  36. Zugazagoitia J et al (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566

    Article  Google Scholar 

  37. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668

    Article  CAS  Google Scholar 

  38. Casasent AK et al (2018) Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172(1–2):205-217e12

    Article  CAS  Google Scholar 

  39. Waylen LN et al (2020) From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun Biol 3(1):1–11

    Article  Google Scholar 

  40. Gawad C, Koh W, Quake SR (2014) Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci USA 111(50):17947–52

    Article  CAS  Google Scholar 

  41. Lawson DA et al (2018) Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol 20(12):1349–1360

    Article  CAS  Google Scholar 

  42. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  Google Scholar 

Download references

Funding

C.G.’s work on single-cell cancer sequencing is supported by the Chan Zuckerberg Biohub Investigator Program, a Burroughs Wellcome Fund Career Award for Medical Scientists, and an NIH Director’s New Innovator Award (1DP2CA239145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gawad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Gawad, C. Bringing precision oncology to cellular resolution with single-cell genomics. Clin Exp Metastasis 39, 79–83 (2022). https://doi.org/10.1007/s10585-021-10129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10129-4

Keywords

Navigation