Skip to main content

Advertisement

Log in

The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells

  • Rising Star Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Platelets are primarily known for their contribution to hemostasis and subsequent wound healing. In addition to these functions, platelets play a role in the process of metastasis. Since the first study that suggested a metastasis-promoting function for platelets was published in 1968, various mechanisms have been proposed to explain how platelets contribute to the metastatic process. These include roles in the intravascular arrest of tumor cells, in tumor cell transendothelial migration, in the degradation of basement membrane barriers, in migration and invasion at the metastatic site, and in the proliferation of disseminated tumor cells. Nevertheless, conflicting observations about the role of platelets in these processes have also been reported. Here, we review the in vivo evidence that supports a role for platelets in metastasis formation, propose several scenarios for the contribution of platelets to tumor cell arrest and transendothelial migration, and discuss the evidence that platelets contribute to metastatic invasion and outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For the sake of semantic clarity, the terms "lodged", "adhered", "entrapped" and "arrested" will be used as defined here: "lodged" refers to a situation in which tumor cells get stuck due to a vessel diameter so narrow that the tumor cell cannot pass. "adhered" refers to a scenario in which tumor cells interact with the endothelium, and remain at their position due to direct molecular interaction with the endothelium. This is especially the case when the diameter of a vessel exceeds the diameter of a tumor cell. The terms "entrapped" and "arrested" can be applied for both of the described scenarios, and are therefore less precise.

References

  1. Gil-Bernabé AM, Lucotti S, Muschel RJ (2013) Coagulation and metastasis: what does the experimental literature tell us? Br J Haematol 162:433–441

    PubMed  Google Scholar 

  2. Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66:550–568

    PubMed  Google Scholar 

  3. Zeidman I (1961) The fate of circulating tumors cells. I. Passage of cells through capillaries. Cancer Res 21:38–39

    CAS  PubMed  Google Scholar 

  4. Gasic G, Gasic T (1962) Removal of sialic acid from the cell coat in tumor cells and vascular endothelium, and its effects on metastasis. Proc Natl Acad Sci USA 48:1172–1177

    CAS  PubMed  Google Scholar 

  5. Agostino D, Cliffton EE, Girolami A (1966) Effect of prolonged coumadin treatment on the production of pulmonary metastases in the rat. Cancer 19:284–288

    CAS  PubMed  Google Scholar 

  6. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61:46–52

    CAS  PubMed  Google Scholar 

  7. Pearlstein E, Ambrogio C, Karpatkin S (1984) Effect of anti-platelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res 44:3884–3887

    CAS  PubMed  Google Scholar 

  8. Mahalingam M, Ugen KE, Kao KJ, Klein PA (1988) Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcomacell variants. Cancer Res 48:1460–1464

    CAS  PubMed  Google Scholar 

  9. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  PubMed  Google Scholar 

  11. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401

    CAS  PubMed  Google Scholar 

  12. Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastasesin breast cancer. J Clin Invest 114:1714–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, Inoue Y, Takeuchi M, Okada M, Ikeda W, Takai Y, Imai T (2008) Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancercell metastasis to the lungs. Oncogene 27:264–273

    CAS  PubMed  Google Scholar 

  14. Coupland LA, Chong BH, Parish CR (2012) Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72:4662–4671

    CAS  PubMed  Google Scholar 

  15. Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, Marchese P, Ruggeri ZM, Felding BH (2016) Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 140(Suppl 1):S27–S36

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S (2018) Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 9:17810–17824

    PubMed  PubMed Central  Google Scholar 

  17. Thiele W, Rothley M, Dimmler A, Bugert P, Salomó Coll C, Sleeman JP (2018) Platelet deficiency in Tpo–/– mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin Exp Metastasis 35:679–689

    PubMed  Google Scholar 

  18. Li R, Ren M, Chen N,Luo M, Deng X, Xia J, Yu G, Liu J, He B, Zhang X, Zhang Z, Zhang X, Ran B, Wu J (2014) Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer 14:167

    PubMed  PubMed Central  Google Scholar 

  19. Jackson W 3rd, Sosnoski DM, Ohanessian SE, Chandler P, Mobley A, Meisel KD, Mastro AM (2017) Role of megakaryocytes in breast cancer metastasis to bone. Cancer Res 77:1942–1954

    CAS  PubMed  Google Scholar 

  20. Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128:2511–2526

    CAS  PubMed  Google Scholar 

  21. Baserga R, Saffi-Otti U (1955) Experimental studies on histogenesis of blood-borne metastases. AMA Arch Pathol 59:26–34

    CAS  PubMed  Google Scholar 

  22. Wood S Jr (1964) Experimental studies of the intravascular dissemination of ascitic v2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bull Schweiz Akad Med Wiss 20:92–121

    Google Scholar 

  23. Jones DS, Wallace AC, Fraser EE (1971) Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst 46:493–504

    CAS  PubMed  Google Scholar 

  24. Chew EC, Josephson RL, Wallace AC (1976) Chap. 6: Morphologic aspects of the arrest of circulating cells. In: Weiss L (ed) Fundamental aspects of metastasis. North-Holland Publishing Company, Amsterdam, pp 121–150

    Google Scholar 

  25. Chew EC, Wallace AC (1976) Demonstration of fibrin in early stages of experimental metastases. Cancer Res 36:1904–1909

    CAS  PubMed  Google Scholar 

  26. Menter DG, Hatfield JS, Harkins C, Sloane BF, Taylor JD, Crissman JD, Honn KV (1987) Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenouslycirculating tumor cells. Clin Exp Metastasis 5:65–78

    CAS  PubMed  Google Scholar 

  27. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    CAS  PubMed  Google Scholar 

  28. Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 10:177

    PubMed  PubMed Central  Google Scholar 

  29. Echtler K, Konrad I, Lorenz M, Schneider S, Hofmaier S, Plenagl F, Stark K, Czermak T, Tirniceriu A, Eichhorn M, Walch A, Enders G, Massberg S, Schulz C (2017) Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PLoS ONE 12:e0172788

    PubMed  PubMed Central  Google Scholar 

  30. Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC (1993) Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin Exp Metastasis 11:377–390

    CAS  PubMed  Google Scholar 

  31. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    CAS  PubMed  Google Scholar 

  32. Zhang Q, Yang M, Shen J, Gerhold LM, Hoffman RM, Xing HR (2010) The role of the intravascular microenvironment in spontaneous metastasis development. Int J Cancer 126:2534–2541

    CAS  PubMed  Google Scholar 

  33. Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, Sarioglu AF, Sullivan R, Madden MW, O'Keefe R, Haber DA, Maheswaran S, Langenau DM, Stott SL, Toner M (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci USA 113:4947–4952

    CAS  PubMed  Google Scholar 

  34. Crissman JD, Hatfield J, Schaldenbrand M, Sloane BF, Honn KV (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53:470–478

    CAS  PubMed  Google Scholar 

  35. Chambers A, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803

    CAS  PubMed  Google Scholar 

  36. Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, Groom AC (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    CAS  PubMed  Google Scholar 

  37. Dingemans KP (1974) Invasion of liver tissue by blood-borne mammary carcinoma cells. J Natl Cancer Inst 53:1813–1824

    CAS  PubMed  Google Scholar 

  38. Sindelar WF, Tralka TS, Ketcham AS (1975) Electron microscopic observations on formation of pulmonary metastases. J Surg Res 18:137–161

    CAS  PubMed  Google Scholar 

  39. Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072

    CAS  PubMed  Google Scholar 

  40. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, Muschel RJ (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619

    CAS  PubMed  Google Scholar 

  41. Nylander S, Mattsson C (2003) Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 14:159–167

    CAS  PubMed  Google Scholar 

  42. Labelle M, Begum S, Hynes RO (2014) Platelets guide he formation of early metastatic niches. Proc Natl Acad Sci USA 11:E3053–E3061

    Google Scholar 

  43. Aird WC (2007) Phenotypic Heterogeneity of the Endothelium II. Representative Vascular Beds. Circ Res 100:174–190

    CAS  PubMed  Google Scholar 

  44. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al-Mehdi A, Muschel RJ (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Enns A, Gassmann P, Schluter K, Korb T, Spiegel HU, Senninger N, Haier J (2004) Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 8:1049–1059

    PubMed  Google Scholar 

  46. Enns A, Korb T, Schluter K, Gassmann P, Spiegel HU, Senninger N, Mitjans F, Haier J (2005) Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer 41:1065–1072

    CAS  PubMed  Google Scholar 

  47. Félétou M (2001) The endothelium: Part 1: multiple functions of the endothelial cells—focus on endothelium-derived vasoactive mediators. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  48. Warren BA, Vales O (1972) The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br J Exp Pathol 53:301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lonsdorf AS, Krämer BF, Fahrleitner M, Schönberger T, Gnerlich S, Ring S, Gehring S, Schneider SW, Kruhlak MJ, Meuth SG, Nieswandt B, Gawaz M, Enk AH, Langer HF (2012) Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. J Biol Chem 287:2168–2178

    CAS  PubMed  Google Scholar 

  50. Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330

    CAS  PubMed  Google Scholar 

  51. Stegner D, Dütting S, Nieswandt B (2014) Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 133:S149–S157

    CAS  PubMed  Google Scholar 

  52. Ludatscher RM, Luse SA, Suntzeff V (1967) An electron microscopic study of pulmonary tumor emboli from transplantable Morris hepatoma 5123. Cancer Res 27:1939–1952

    CAS  PubMed  Google Scholar 

  53. Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, Fairn GD, Cockcroft S, Durham A, Krishnaswamy S, Abrams CS (2017) Phosphatidylinositol transfer protein-α in platelets is inconsequential for thrombosis yet is utilizedfor tumor metastasis. Nat Commun 8:1216

    PubMed  PubMed Central  Google Scholar 

  54. Kinjo M (1978) Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. Br J Cancer 38:293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, Sekimata M, Homma Y, Suzuki T (2002) An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 160:1973–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kats-Ugurlu G, Roodink I, de Weijert M, Tiemessen D, Maass C, Verrijp K, van der Laak J, de Waal R, Mulders P, Oosterwijk E, Leenders W (2009) Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J Pathol 219:287–293

    CAS  PubMed  Google Scholar 

  57. García-Román J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335:259–269

    PubMed  Google Scholar 

  58. Cloutier N, Paré A, Farndale RW, Schumacher HR, Nigrovic PA, Lacroix S, Boilard E (2012) Platelets can enhance vascular permeability. Blood 120:1334–1343

    CAS  PubMed  Google Scholar 

  59. Imura Y, Terashita Z, Nishikawa K (1986) Possible role of platelet activating factor (PAF) in disseminated intravascular coagulation (DIC), evidenced by use of a PAF antagonist, CV-3988. Life Sci 39:111–117

    CAS  PubMed  Google Scholar 

  60. Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF (1998) In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol 275(3):H1054-61

    PubMed  Google Scholar 

  61. Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1977) The role of platelet-activating factor in platelet aggregation. Nature 279:799–800

    Google Scholar 

  62. Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN (2009) Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem 284:5381–5394

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gros A, Ollivier V, Ho-Tin-Noé B (2015) Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 5:678

    PubMed  PubMed Central  Google Scholar 

  64. Garcia JG, Verin AD, Schaphorst KL (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22:309–315

    CAS  PubMed  Google Scholar 

  65. Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A 83:6489–6493

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin TA, Mansel RE, Jiang WG (2002) Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol 192:268–275

    CAS  PubMed  Google Scholar 

  67. Yamada N, Nakagawa S, Horai S, Tanaka K, Deli MA, Yatsuhashi H, Niwa M (2014) Hepatocyte growth factor enhances the barrier function in primary cultures of rat brainmicrovascular endothelial cells. Microvasc Res 92:41–49

    CAS  PubMed  Google Scholar 

  68. Stenberg PE, Shuman MA, Levine SP, Bainton DF (1984) Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 98:748–760

    CAS  PubMed  Google Scholar 

  69. Sahni A, Arévalo MT, Sahni SK, Simpson-Haidaris PJ (2009) The VE-cadherin binding domain of fibrinogen induces endothelial barrier permeability and enhances transendothelial migration of malignant breast epithelial cells. Int J Cancer 125:577–584

    CAS  PubMed  Google Scholar 

  70. Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404

    CAS  PubMed  Google Scholar 

  71. Honn KV, Grossi IM, Diglio CA, Wojtukiewicz M, Taylor JD (1989) Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-inducedendothelial cell retraction. FASEB J 3:2285–2293

    CAS  PubMed  Google Scholar 

  72. Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708

    CAS  PubMed  Google Scholar 

  73. Boxberger HJ, Paweletz N, Spiess E, Kriehuber R (1989) An in vitro model study of BSp73 rat tumour cell invasion into endothelial monolayer. Anticancer Res 9:1777–1786

    CAS  PubMed  Google Scholar 

  74. Honn KV, Tang DG, Grossi IM, Renaud C, Duniec ZM, Johnson CR, Diglio CA (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9

    CAS  PubMed  Google Scholar 

  75. Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noël A, Foidart JM (1997) Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res 237:347–356

    CAS  PubMed  Google Scholar 

  76. Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68:5167–5176

    CAS  PubMed  Google Scholar 

  77. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis viaP2Y2 receptor. Cancer Cell 24:130–137

    CAS  PubMed  Google Scholar 

  78. Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570

    CAS  Google Scholar 

  79. Häuselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, Bauer AT, Schneider SW, Borsig L (2016) Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res 76:5302–5312

    PubMed  PubMed Central  Google Scholar 

  80. Ward Y, Lake R, Faraji F, Sperger J, Martin P, Gilliard C, Ku KP, Rodems T, Niles D, Tillman H, Yin J, Hunter K, Sowalsky AG, Lang J, Kelly K (2018) Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep 23:808–822

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schleicher RI, Reichenbach F, Kraft P, Kumar A, Lescan M, Todt F, Göbel K, Hilgendorf I, Geisler T, Bauer A, Olbrich M, Schaller M, Wesselborg S, O'Reilly L, Meuth SG, Schulze-Osthoff K, Gawaz M, Li X, Kleinschnitz C, Edlich F, Langer HF (2015) Platelets induce apoptosis via membrane-bound FasL. Blood 126:1483–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuckleburg CJ, Tiwari R, Czuprynski CJ (2008) Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and – 9 and generation of reactive oxygen species. Thromb Haemost 99:363–372

    CAS  PubMed  Google Scholar 

  83. Shaughnessy SG, Lafrenie RM, Buchanan MR, Podor TJ, Orr FW (1991) Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated tumor cell adhesion. Am J Pathol 138:1535–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noël A (1998) nduction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205

    CAS  PubMed  Google Scholar 

  85. Vekemans K, Timmers M, Vermijlen D, Zanger RD, Wisse E, Braet F (2004) Cytotoxic reactions f CC531s towards liver sinusoidal endothelial cells: a microscopical study. Comp Hepato 3(Suppl 1):S49

    Google Scholar 

  86. Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, Pasparakis M, Offermanns S (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536:215–218

    CAS  PubMed  Google Scholar 

  87. Seizer P, May AE (2013) Platelets and matrix metalloproteinases. Thromb Haemost 110:903–909

    CAS  PubMed  Google Scholar 

  88. Albeiroti S, Ayasoufi K, Hill DR, Shen B, de la Motte CA (2015) Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation. Blood 125:1460–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cui H, Tan YX, Österholm C, Zhang X, Hedin U, Vlodavsky I, Li JP (2016) Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget 7:39486–39496

    PubMed  PubMed Central  Google Scholar 

  90. Gresele P, Falcinelli E, Sebastiano M, Momi S (2017) Matrix Metalloproteinases and Platelet Function. Prog Mol Biol Transl Sci 147:133–165

    PubMed  Google Scholar 

  91. Pang JH, Coupland LA, Freeman C, Chong BH, Parish C (2015) Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clin Exp Metastasis 32:495–505

    CAS  PubMed  Google Scholar 

  92. Malezewski JJ, Lai CK, Veinot JP (2016) Anatomic considerations and examination of cardiovascular specimens (excluding devices). In: Buja LM, Butany J (eds) Cardiovascular pathology, 4th ed. Academic Press, Cambridge, pp 1–56

    Google Scholar 

  93. Nieto MA, Cano A (2012) The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Bio 22:361–368

    CAS  Google Scholar 

  94. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68:6851–6858

    PubMed  PubMed Central  Google Scholar 

  96. Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, Sood AK, Afshar-Kharghan V (2012) Platelets increase the proliferation of ovarian cancer cells. Blood 120:4869–4872

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yuan L, Liu X (2015) Platelets are associated with xenograft tumor growth and the clinical malignancy of ovariancancer through an angiogenesis-dependent mechanism. Mol Med Rep 1:2449–2458

    Google Scholar 

  98. Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng J, Lyons YM, Nagaraja AS, Dood RL, Wen Y, Mangala LS, Hansen JM, Rupaimoole R, Gharpure KM, Rodriguez-Aguayo C, Yim SY, Lee JS, Ivan C, Hu W, Lopez-Berestein G, Wong ST, Karlan BY, Levine DA, Liu J, Afshar-Kharghan V, Sood AK (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 8:310

    PubMed  PubMed Central  Google Scholar 

  99. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M, Degen JL (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilko Thiele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foss, A., Muñoz-Sagredo, L., Sleeman, J. et al. The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells. Clin Exp Metastasis 37, 47–67 (2020). https://doi.org/10.1007/s10585-019-10009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-10009-y

Keywords

Navigation