The importance of developing therapies targeting the biological spectrum of metastatic disease

  • Andries Zijlstra
  • Ariana Von Lersner
  • Dihua Yu
  • Lucia Borrello
  • Madeleine Oudin
  • Yibin Kang
  • Erik Sahai
  • Barbara Fingleton
  • Ulrike Stein
  • Thomas R. Cox
  • John T. Price
  • Yasumasa Kato
  • Alana L. Welm
  • Julio A. Aguirre-GhisoEmail author
  • The Board Members of the Metastasis Research Society


Great progress has been made in cancer therapeutics. However, metastasis remains the predominant cause of death from cancer. Importantly, metastasis can manifest many years after initial treatment of the primary cancer. This is because cancer cells can remain dormant before forming symptomatic metastasis. An important question is whether metastasis research should focus on the early treatment of metastases, before they are clinically evident (“overt”), or on developing treatments to stop overt metastasis (stage IV cancer). In this commentary we want to clarify why it is important that all avenues of treatment for stage IV patients are developed. Indeed, future treatments are expected to go beyond the mere shrinkage of overt metastases and will include strategies that prevent disseminated tumor cells from emerging from dormancy.


Stage IV cancer Minimal residual disease Metastasis Cancer dormancy Liquid biopsy 



  1. 1.
    Brown M et al (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359:1408–1411. CrossRefGoogle Scholar
  2. 2.
    Pereira ER et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403–1407. CrossRefGoogle Scholar
  3. 3.
    Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340. CrossRefGoogle Scholar
  4. 4.
    Wan JCM et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238. CrossRefGoogle Scholar
  5. 5.
    Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622. CrossRefGoogle Scholar
  6. 6.
    Borgen E et al (2018) NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res 20:120. CrossRefGoogle Scholar
  7. 7.
    Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10:871–877CrossRefGoogle Scholar
  8. 8.
    Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19:276–277. CrossRefGoogle Scholar
  9. 9.
    Polzer B, Klein CA (2013) Metastasis awakening: the challenges of targeting minimal residual cancer. Nat Med 19:274–275. CrossRefGoogle Scholar
  10. 10.
    von Minckwitz G et al (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. New Engl J Med 377:122–131. CrossRefGoogle Scholar
  11. 11.
    Wolchok J (2018) Putting the immunologic brakes on cancer. Cell 175:1452–1454. CrossRefGoogle Scholar
  12. 12.
    Sosa MS (2016) Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol 3:e1029062. CrossRefGoogle Scholar
  13. 13.
    Carlson P et al (2019) Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol. Google Scholar
  14. 14.
    Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–247. CrossRefGoogle Scholar
  15. 15.
    Pastoriza JM et al (2018) Black race and distant recurrence after neoadjuvant or adjuvant chemotherapy in breast cancer. Clin Exp Metastasis. Google Scholar
  16. 16.
    Karagiannis GS, Condeelis JS, Oktay MH (2018) Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clin Exp Metastasis 35:269–284. CrossRefGoogle Scholar
  17. 17.
    Karagiannis GS et al (2017) Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. Google Scholar
  18. 18.
    El Rayes T et al (2015) Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA 112:16000–16005. CrossRefGoogle Scholar
  19. 19.
    De Cock JM et al (2016) Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res 76:6778–6784. CrossRefGoogle Scholar
  20. 20.
    Pommier A et al (2018) Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. Google Scholar
  21. 21.
    Fluegen G et al (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120–132. CrossRefGoogle Scholar
  22. 22.
    Chery L et al (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939–9951CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Andries Zijlstra
    • 1
    • 7
  • Ariana Von Lersner
    • 1
    • 7
  • Dihua Yu
    • 2
  • Lucia Borrello
    • 3
  • Madeleine Oudin
    • 4
  • Yibin Kang
    • 5
  • Erik Sahai
    • 6
  • Barbara Fingleton
    • 7
  • Ulrike Stein
    • 8
    • 9
  • Thomas R. Cox
    • 10
    • 11
  • John T. Price
    • 12
    • 13
    • 14
  • Yasumasa Kato
    • 15
  • Alana L. Welm
    • 16
  • Julio A. Aguirre-Ghiso
    • 17
    Email author
  • The Board Members of the Metastasis Research Society
  1. 1.Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Anatomy and Structural BiologyAlbert Einstein College of Medicine/Montefiore Medical CenterBronxUSA
  4. 4.Department of Biomedical EngineeringTufts UniversityMedfortUSA
  5. 5.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  6. 6.The Francis Crick InstituteLondonUK
  7. 7.Program of Cancer BiologyVanderbilt UniversityNashvilleUSA
  8. 8.Experimental and Clinical Research CenterCharité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular MedicineBerlinGermany
  9. 9.German Cancer Consortium (DKTK)HeidelbergGermany
  10. 10.Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer DivisionSydneyAustralia
  11. 11.St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
  12. 12.Institute for Health and SportVictoria UniversityMelbourneAustralia
  13. 13.Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneAustralia
  14. 14.Department of Biochemistry & Molecular BiologyMonash UniversityClaytonAustralia
  15. 15.Department of Oral Function & Molecular BiologyOhu University School of DentistryKoriyamaJapan
  16. 16.Department of Oncological Sciences and Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA
  17. 17.Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations