Skip to main content

Advertisement

Log in

The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

“Far, far beneath in the abysmal sea, The Kraken sleepeth.

Until the latter fire shall heat the deep; In roaring he shall rise.” Alfred Lord Tennyson

Abstract

Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALDH1:

Aldehyde dehydrogenase 1

ALK:

Anaplastic lymphoma kinase

ATRA:

All-trans retinoic acid

CCL2:

Chemokine ligand 2

CRISPR:

Clustered regulatory interspaced short palindromic repeats

CSCs:

Cancer stem cells

CTCs:

Circulating tumour cells

CTLA-4:

Cytotoxic T-lymphocyte–associated antigen 4

EGF:

Epidermal growth factor

EIS:

EMT-inhibiting sextet

EM-axis:

Epithelial-mesenchymal axis

EMP:

Epithelial-mesenchymal plasticity

EMT:

Epithelial mesenchymal transition

EMT-TFs:

EMT-transcriptional factors

ERα:

Estrogen receptor alpha

ERK:

Extracellular signal-regulated kinase

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

HER2:

Human epidermal growth factor receptor 2

HIF1α:

Hypoxia inducible factor-1α

IAP:

Inhibitor of apoptosis

MAPK:

Mitogen activated protein kinase

MEK:

Mitogen-activated protein/extracellular signal-regulated kinase kinase

MET:

Mesenchymal epithelial transition

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

NF-kB:

Nuclear factor kB

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PD1:

Programmed death 1

PD-L1:

Programmed death ligand 1

PFS:

Progression-free survival

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  1. Halbleib J, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20(23):3199–3214

    Article  PubMed  CAS  Google Scholar 

  2. Kawano S, Asano M, Adachi Y, Matsui J (2016) Antimitotic and non-mitotic effects of eribulin mesilate in soft tissue sarcoma. Anticancer Res 36(4):1553–1561

    PubMed  CAS  Google Scholar 

  3. Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3(10):2141–2150

    Article  PubMed  CAS  Google Scholar 

  4. Haensel D, Dai X (2018) Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev Dyn. https://doi.org/10.1002/dvdy.24561

    Article  PubMed  Google Scholar 

  5. Tomaskovic-Crook E, Thompson EW, Thiery JP (2009) Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res 11(6):213. https://doi.org/10.1186/bcr2416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  7. Tan T, Miow Q, Miki Y, Noda T, Mori S, Huang R, Thiery J (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6(10):1279–1293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997

    Article  PubMed  CAS  Google Scholar 

  9. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68. https://doi.org/10.1186/bcr2635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McInnes LM, Jacobson N, Redfern A, Dowling A, Thompson EW, Saunders CM (2015) Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial-mesenchymal plasticity. Front Oncol 5:42. https://doi.org/10.3389/fonc.2015.00042

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E, Gazzaniga P (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449–455. https://doi.org/10.1007/s10549-011-1373-x

    Article  PubMed  CAS  Google Scholar 

  12. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. https://doi.org/10.1126/science.1228522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15(2):235–252. https://doi.org/10.1007/s10911-010-9175-z

    Article  PubMed  Google Scholar 

  14. Kotiyal S, Bhattacharya S (2014) Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun 453(1):112–116. https://doi.org/10.1016/j.bbrc.2014.09.069

    Article  PubMed  CAS  Google Scholar 

  15. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3(8):e2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629. https://doi.org/10.1038/nrclinonc.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao Z, Livas T, Kyprianou N (2016) Anoikis and EMT: lethal “liaisons” during cancer progression. Critical reviews in oncogenesis 21(3–4):155–168

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thompson EW, Haviv I (2011) The social aspects of EMT-MET plasticity. Nat Med 17(9):1048–1049. https://doi.org/10.1038/nm.2437

    Article  PubMed  CAS  Google Scholar 

  21. Gunasinghe NPAD., Wells A, Thompson E, Hugo H (2012) Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev 31(3–4):469–478

    Article  PubMed  CAS  Google Scholar 

  22. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736. https://doi.org/10.1016/j.ccr.2012.09.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ocaña Oscar H, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724. https://doi.org/10.1016/j.ccr.2012.10.012

    Article  PubMed  CAS  Google Scholar 

  24. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y (2011) Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nature Med 17(9):1101–1108. https://doi.org/10.1038/nm.2401

    Article  PubMed  CAS  Google Scholar 

  25. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527(7579):472–476. https://doi.org/10.1038/nature15748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Krebs A, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton V, Pilarsky C, Winkler T, Brabletz S, Stemmler M, Brabletz T (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19(5):518–529

    Article  PubMed  CAS  Google Scholar 

  27. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, Yang J, Weinberg RA (2017) Upholding a role for EMT in breast cancer metastasis. Nature 547:E1. https://doi.org/10.1038/nature22816

    Article  PubMed  CAS  Google Scholar 

  28. Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L, Massague J, Benezra R (2013) TGFβ-Id1 Signaling opposes twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 5(5):1228–1242. https://doi.org/10.1016/j.celrep.2013.11.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Putzke AP, Ventura AP, Bailey AM, Akture C, Opoku-Ansah J, Celiktas M, Hwang MS, Darling DS, Coleman IM, Nelson PS, Nguyen HM, Corey E, Tewari M, Morrissey C, Vessella RL, Knudsen BS (2011) Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. Am J Pathol 179(1):400–410. https://doi.org/10.1016/j.ajpath.2011.03.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H (2015) Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 5:155. https://doi.org/10.3389/fonc.2015.00155

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981. https://doi.org/10.1083/jcb.200601018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, De Clercq S, Minguijón E, Balsat C, Sokolow Y, Dubois C, De Cock F, Scozzaro S, Sopena F, Lanas A, D’Haene N, Salmon I, Marine J-C, Voet T, Sotiropoulou P, Blanpain C (2018) Identification of the tumour transition states occurring during EMT. Nature 556(7702):463–468

    Article  PubMed  CAS  Google Scholar 

  33. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, Schäfer R, van Diest P, Voest E, van Oudenaarden A, Vrisekoop N, van Rheenen J (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14(10):2281–2288. https://doi.org/10.1016/j.celrep.2016.02.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Celià-Terrassa T, Meca-Cortés Ó, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R, Díaz A, Guerra-Rebollo M, Lozano JJ, Estarás C, Ulloa C, ρlvarez-Simón D, Milà J, Vilella R, Paciucci R, Martínez-Balbás M, García de Herreros A, Gomis RR, Kang Y, Blanco J, Fernández PL, Thomson TM (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Investig 122(5):1849–1868. https://doi.org/10.1172/JCI59218

    Article  PubMed  CAS  Google Scholar 

  35. Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, Hu G-f (2008) Epithelial-mesenchymal transition induced by growth suppressor p12(CDK2-AP1) promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68(24):10377–10386. https://doi.org/10.1158/0008-5472.CAN-08-1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fidler IJ (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9(3):223–227

    Article  PubMed  CAS  Google Scholar 

  37. Alix-Panabières C, Mader S, Pantel K (2017) Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med 95(2):133–142. https://doi.org/10.1007/s00109-016-1500-6

    Article  PubMed  CAS  Google Scholar 

  38. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558. https://doi.org/10.1016/j.ceb.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  39. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6):488–494. https://doi.org/10.1038/ncb2976

    Article  PubMed  CAS  Google Scholar 

  40. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429–1437. https://doi.org/10.1172/JCI36183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY-J, Thiery JP (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6(10):1279–1293. https://doi.org/10.15252/emmm.201404208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Foroutan M, Bhuva D, Horan K, Lyu R, Cursons J, Davis MJ (2017) Defining a landscape of molecular phenotypes using a simple single sample scoring method. bioRxiv. https://doi.org/10.1101/231217

    Article  Google Scholar 

  43. Cursons J, Leuchowius K-J, Waltham M, Tomaskovic-Crook E, Foroutan M, Bracken CP, Redfern A, Crampin EJ, Street I, Davis MJ, Thompson EW (2015) Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Commun Signal 13:26. https://doi.org/10.1186/s12964-015-0106-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24(1):306–319. https://doi.org/10.1128/MCB.24.1.306-319.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lin T, Ponn A, Hu X, Law BK, Lu J (2010) Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29(35):4896–4904. https://doi.org/10.1038/onc.2010.234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nagathihalli N, Massion P, Gonzalez A, Lu P, Datta P (2012) Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin. Mol Cancer Ther 11(11):2362–2372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y (2012) SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 31(1):110–123. https://doi.org/10.1038/emboj.2011.364

    Article  PubMed  CAS  Google Scholar 

  48. Yang M-H, Hsu D, Wang H-J, Lan H-Y, Yang W-H, Huang C-H, Kao S-Y, Tzeng C-H, Tai S-K, Chang S-Y, Lee O, Wu K-J (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12(10):982–992

    Article  PubMed  CAS  Google Scholar 

  49. Sánchez Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A (2010) ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29(24):3490–3500

    Article  PubMed  CAS  Google Scholar 

  50. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn C-O, Heidecke C-D, Friess H, Büchler M, Evert M, Lerch M, Weiss F (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61(3):439–448

    Article  PubMed  CAS  Google Scholar 

  51. Liao W, Jordaan G, Srivastava MK, Dubinett S, Sharma S, Sharma S (2013) Effect of epigenetic histone modifications on E-cadherin splicing and expression in lung cancer. Am J Cancer Res 3(4):374–389

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Sharma S, Lichtenstein A (2009) Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood 114(19):4179–4185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jordaan G, Liao W, Sharma S (2013) E-cadherin gene re-expression in chronic lymphocytic leukemia cells by HDAC inhibitors. BMC Cancer 13(1):88. https://doi.org/10.1186/1471-2407-13-88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sakamoto T, Kobayashi S, Yamada D, Nagano H, Tomokuni A, Tomimaru Y, Noda T, Gotoh K, Asaoka T, Wada H, Kawamoto K, Marubashi S, Eguchi H, Doki Y, Mori M (2016) A histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer. PLoS ONE 11(1):e0145985. https://doi.org/10.1371/journal.pone.0145985

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V, Elliott S, Gilliam D, Pounder FN, Anbalagan M, Chrisey DB, Rowan BG, Burow ME, Collins-Burow BM (2014) Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 145(3):593–604. https://doi.org/10.1007/s10549-014-2979-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ruscetti M, Dadashian EL, Guo W, Quach B, Mulholland DJ, Park JW, Tran LM, Kobayashi N, Bianchi-Frias D, Xing Y, Nelson PS, Wu H (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35(29):3781–3795. https://doi.org/10.1038/onc.2015.444

    Article  PubMed  CAS  Google Scholar 

  57. Giudice FS, Pinto DS, Nör JE, Squarize CH, Castilho RM (2013) Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS ONE 8(3):e58672. https://doi.org/10.1371/journal.pone.0058672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Feng J, Cen J, Li J, Zhao R, Zhu C, Wang Z, Xie J, Tang W (2015) Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes Migr 9(6):495–501. https://doi.org/10.1080/19336918.2015.1112486

    Article  CAS  Google Scholar 

  59. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420–1428. https://doi.org/10.1172/JCI39104

    Article  PubMed  CAS  Google Scholar 

  60. Zhu Q-C, Gao R-Y, Wu W, Qin H-L (2013) Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac J Cancer Prev 14(5):2689–2698

    Article  PubMed  Google Scholar 

  61. Xu S, Chheda C, Ouhaddi Y, Benhaddou H, Bourhim M, Grippo P, Principe D, Mascariñas E, DeCant B, Tsukamoto H, Pandol S, Edderkaoui M (2015) Characterization of mouse models of early pancreatic lesions induced by alcohol and chronic pancreatitis. Pancreas 44(6):882–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lee J, Roberts JS, Atanasova KR, Chowdhury N, Han K, Yilmaz Ö (2017) Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, porphyromonas gingivalis. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00493

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang S, Da Zhang L, Xiong Y, Zhang Y, Li H, Li X, Dong J (2009) HBx protein induces EMT through c-Src activation in SMMC-7721 hepatoma cell line. Biochem Biophys Res Commun 382(3):555–560

    Article  PubMed  CAS  Google Scholar 

  64. Shen H-J, Sun Y-H, Zhang S-J, Jiang J-X, Dong X-W, Jia Y-L, Shen J, Guan Y, Zhang L-H, Li F-F, Lin X-X, Wu X-M, Xie Q-M, Yan X-F (2014) Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. Biochim Biophys Acta 1840 (6):1838–1849

    Article  PubMed  CAS  Google Scholar 

  65. Wang Y, Xu M, Ke Z-J, Luo J (2017) Cellular and molecular mechanism underlying alcohol-induced aggressiveness of breast cancer. Pharmacol Res 115:299–308. https://doi.org/10.1016/j.phrs.2016.12.005

    Article  PubMed  CAS  Google Scholar 

  66. Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L, Dou C, Liu Q, Zheng X (2017) Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling. Cell Physiol Biochem 44(5):1856–1868

    Article  PubMed  CAS  Google Scholar 

  67. Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Steeg PS, Anderson RL, Bar-Eli M, Chambers AF, Eccles SA, Hunter K, Itoh K, Kang Y, Matrisian LM, Sleeman JP, Theodorescu D, Thompson EW, Welch DR (2009) An open letter to the FDA and other regulatory agencies: preclinical drug development must consider the impact on metastasis. Clin Cancer Res 15:4529–4529. https://doi.org/10.1158/1078-0432.CCR-09-1363

    Article  PubMed  PubMed Central  Google Scholar 

  69. Peppicelli S, Bianchini F, Torre E, Calorini L (2014) Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis 31(4):423–433

    Article  PubMed  CAS  Google Scholar 

  70. Deng S, Li X, Niu Y, Zhu S, Jin Y, Chen J, Liu Y, He C, Yin T, Yang Z, Tao J, Xiong J, Wu H, Wang C, Zhao G (2015) MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget 6(37):39661–39675

    Article  PubMed  PubMed Central  Google Scholar 

  71. Suzuki A, Maeda T, Baba Y, Shimamura K, Kato Y (2014) Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell Int 14(1):129–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Marín-Hernández Á, Gallardo-Pérez JC, Hernández Reséndiz I, Del Mazo-Monsalvo I, Robledo-Cadena DX, Moreno Sánchez R, Rodríguez Enríquez S (2017) Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic HeLa cell cultures and microspheroids. J Cell Physiol 232(6):1346–1359

    Article  PubMed  CAS  Google Scholar 

  73. Aoyagi K, Tamaoki M, Nishumura T, Sasaki H (2013) Technical considerations for analyzing EMT-MET data from surgical samples. Cancer Lett 341(1):105–110. https://doi.org/10.1016/j.canlet.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  74. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2:e179. https://doi.org/10.1038/cddis.2011.61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Krohn A, Ahrens T, Yalcin A, Plones T, Wehrle J, Taromi S, Wollner S, Follo M, Brabletz T, Mani SA, Claus R, Hackanson B, Burger M (2014) Tumor cell heterogeneity in Small Cell Lung Cancer (SCLC): phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT) and DNA methylation changes. PLoS ONE 9(6):e100249. https://doi.org/10.1371/journal.pone.0100249

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12:91–91. https://doi.org/10.1186/1471-2407-12-91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yan Y-R, Xie Q, Li F, Zhang Y, Ma J-W, Xie S-M, Li H-Y, Zhong X-Y (2014) Epithelial-to-mesenchymal transition is involved in BCNU resistance in human glioma cells. Neuropathology 34(2):128–134

    Article  PubMed  CAS  Google Scholar 

  78. Xiong H, Hong J, Du W, Lin Y-W, Ren L-L, Wang Y-C, Su W-Y, Wang J-L, Cui Y, Wang Z-H, Fang J-Y (2012) Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem 287(8):5819–5832

    Article  PubMed  CAS  Google Scholar 

  79. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712. https://doi.org/10.1158/0008-5472.CAN-09-1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang G, Tian X, Li Y, Wang Z, Li X, Zhu C (2018) miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed Pharmacother 97:736–744. https://doi.org/10.1016/j.biopha.2017.10.163

    Article  PubMed  CAS  Google Scholar 

  81. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, Barrow D, Nicholson RI (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118(2):290–301. https://doi.org/10.1002/ijc.21355

    Article  PubMed  CAS  Google Scholar 

  82. Huang S, Liu Q, Liao Q, Wu Q, Sun B, Yang Z, Hu X, Tan M, Li L (2018) IL-6/STAT3 promotes prostate cancer resistance to androgen deprivation therapy via regulating PTTG1 expression. Cancer Sci. https://doi.org/10.1111/cas.13493

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lesniak D, Sabri S, Xu Y, Graham K, Bhatnagar P, Suresh M, Abdulkarim B (2013) Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer. PLoS ONE 8(8):e71987. https://doi.org/10.1371/journal.pone.0071987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yang Z, Guo L, Liu D, Sun L, Chen H, Deng Q, Liu Y, Yu M, Ma Y, Guo N, Shi M (2015) Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 6(7):5072–5087

    Article  PubMed  Google Scholar 

  85. Frederick BA, Helfrich BA, Coldren CD, Zheng D, Chan D, Bunn PA Jr, Raben D (2007) Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 6(6):1683–1691. https://doi.org/10.1158/1535-7163.MCT-07-0138

    Article  PubMed  CAS  Google Scholar 

  86. Kim HR, Kim WS, Choi YJ, Choi CM, Rho Jin K, Lee JC (2013) Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation. Mol Oncol 7(6):1093–1102. https://doi.org/10.1016/j.molonc.2013.08.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ramsdale R, Jorissen R, Li F, Al Obaidi S, Ward T, Sheppard K, Bukczynska P, Young R, Boyle S, Shackleton M, Bollag G, Long G, Tulchinsky E, Rizos H, Pearson R, McArthur G, Dhillon A, Ferrao P (2015) The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal 8(390):ra82

    Article  PubMed  CAS  Google Scholar 

  88. Miyazaki S, Kikuchi H, Iino I, Uehara T, Setoguchi T, Fujita T, Hiramatsu Y, Ohta M, Kamiya K, Kitagawa K, Kitagawa M, Baba S, Konno H (2014) Anti-VEGF antibody therapy induces tumor hypoxia and stanniocalcin 2 expression and potentiates growth of human colon cancer xenografts. Int J Cancer 135(2):295–307

    Article  PubMed  CAS  Google Scholar 

  89. Shintani Y, Okimura A, Sato K, Nakagiri T, Kadota Y, Inoue M, Sawabata N, Minami M, Ikeda N, Kawahara K, Matsumoto T, Matsuura N, Ohta M, Okumura M (2011) Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann Thorac Surg 92(5):1794–1804. (discussion 1804)

    Article  PubMed  Google Scholar 

  90. Marin-Aguilera M, Codony-Servat J, Reig O, Lozano JJ, Fernandez PL, Pereira MV, Jimenez N, Donovan M, Puig P, Mengual L, Bermudo R, Font A, Gallardo E, Ribal MJ, Alcaraz A, Gascon P, Mellado B (2014) Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 13(5):1270–1284. https://doi.org/10.1158/1535-7163.MCT-13-0775

    Article  PubMed  CAS  Google Scholar 

  91. Shintani Y, Okimura A, Sato K, Nakagiri T, Kadota Y, Inoue M, Sawabata N, Minami M, Ikeda N, Kawahara K, Matsumoto T, Matsuura N, Ohta M, Okumura M (2011) Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann Thorac Surg 92(5):1794–1804. https://doi.org/10.1016/j.athoracsur.2011.07.032. (discussion 1804)

    Article  PubMed  Google Scholar 

  92. Redfern AD, McLaren SA, Dissanayake V, Chan A, Zeps N, Dobrovic A, Soon L, Thompson EW, Christobel SM (2016) Predictive value of de novo and induced epithelial-mesenchymal transition in locally advanced breast cancer treated with neoadjuvant chemotherapy. Cancer Res 76(4 Suppl):P1-05-03

    Article  Google Scholar 

  93. Hara J, Miyata H, Yamasaki M, Sugimura K, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M, Doki Y (2014) Mesenchymal phenotype after chemotherapy is associated with chemoresistance and poor clinical outcome in esophageal cancer. Oncol Rep 31(2):589–596. https://doi.org/10.3892/or.2013.2876

    Article  PubMed  CAS  Google Scholar 

  94. Kawamoto A, Yokoe T, Tanaka K, Saigusa S, Toiyama Y, Yasuda H, Inoue Y, Miki C, Kusunoki M (2012) Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep 27(1):51–57. https://doi.org/10.3892/or.2011.1485

    Article  PubMed  CAS  Google Scholar 

  95. Fifis T, Nguyen L, Malcontenti Wilson C, Chan L, Nunes Costa P, Daruwalla J, Nikfarjam M, Muralidharan V, Waltham M, Thompson E, Christophi C (2013) Treatment with the vascular disruptive agent OXi4503 induces an immediate and widespread epithelial to mesenchymal transition in the surviving tumor. Cancer Med 2(5):595–610

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Nörz D, Grottke A, Bach J, Herzberger C, Hofmann B, Nashan B, Jücker M, Ewald F (2015) Discontinuing MEK inhibitors in tumor cells with an acquired resistance increases migration and invasion. Cell Signal 27(11):2191–2200

    Article  PubMed  CAS  Google Scholar 

  97. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 14(6):1756–1764. https://doi.org/10.1200/jco.1996.14.6.1756

    Article  PubMed  CAS  Google Scholar 

  98. Li C, Xiang A, Chen X, Yin K, Lu J, Yin W (2017) Optimizing the treatment of bevacizumab as first-line therapy for human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer: an updated meta-analysis of published randomized trials. OncoTargets Ther 10:3155–3168. https://doi.org/10.2147/OTT.S138600

    Article  Google Scholar 

  99. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825. https://doi.org/10.1073/pnas.0905718106

    Article  PubMed  Google Scholar 

  100. Martín M, Loibl S, von Minckwitz G, Morales S, Martinez N, Guerrero A, Anton A, Aktas B, Schoenegg W, Muñoz M, Garcia-Saenz J, Gil M, Ramos M, Margeli M, Carrasco E, Liedtke C, Wachsmann G, Mehta K, De la Haba-Rodriguez JR (2015) Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: the letrozole/fulvestrant and avastin (LEA) study. J Clin Oncol 33(9):1045–1052

    Article  PubMed  CAS  Google Scholar 

  101. Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo P-H, Vella LJ, Goding CR, Cebon J, Behren A (2014) Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5(14):5782–5797

    Article  PubMed  PubMed Central  Google Scholar 

  102. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, Ribas A, Hogg D, Hamid O, Ascierto PA, Garbe C, Testori A, Maio M, Lorigan P, Lebbé C, Jouary T, Schadendorf D, O’Day SJ, Kirkwood JM, Eggermont AM, Dréno B, Sosman JA, Flaherty KT, Yin M, Caro I, Cheng S, Trunzer K, Hauschild A (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15(3):323–332. https://doi.org/10.1016/S1470-2045(14)70012-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. de Bono J, Oudard S, Ozguroglu M, Hansen S, Machiels J-P, Kocak I, Gravis G, Bodrogi I, Mackenzie M, Shen L, Roessner M, Gupta S, Sartor AO (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376(9747):1147–1154

    Article  PubMed  CAS  Google Scholar 

  104. Martin SK, Pu H, Penticuff JC, Cao Z, Horbinski C, Kyprianou N (2016) Multinucleation and mesenchymal-to-epithelial-transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res 76(4):912–926. https://doi.org/10.1158/0008-5472.CAN-15-2078

    Article  PubMed  CAS  Google Scholar 

  105. Yardley DA, Noguchi S, Pritchard KI, Burris HA, Baselga J, Gnant M, Hortobagyi GN, Campone M, Pistilli B, Piccart M, Melichar B, Petrakova K, Arena FP, Erdkamp F, Harb WA, Feng W, Cahana A, Taran T, Lebwohl D, Rugo HS (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30(10):870–884. https://doi.org/10.1007/s12325-013-0060-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y, Noguchi S, Perez A, Rugo HS, Deleu I, Burris HA, Provencher L, Neven P, Gnant M, Shtivelband M, Wu C, Fan J, Feng W, Taran T, Baselga J (2014) Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. Ann Oncol 25(12):2357–2362

    Article  PubMed  CAS  Google Scholar 

  107. Terashima M, Sakai K, Togashi Y, Hayashi H, De Velasco MA, Tsurutani J, Nishio K (2014) Synergistic antitumor effects of S-1 with eribulin in vitro and in vivo for triple-negative breast cancer cell lines. SpringerPlus 3:417. https://doi.org/10.1186/2193-1801-3-417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Twelves C, Cortes J, Vahdat L, Olivo M, He Y, Kaufman P, Awada A (2014) Efficacy of eribulin in women with metastatic breast cancer: a pooled analysis of two phase 3 studies. Breast Cancer Res Treat 148(3):553–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Schöffski P, Chawla S, Maki R, Italiano A, Gelderblom H, Choy E, Grignani G, Camargo V, Bauer S, Rha S, Blay J-Y, Hohenberger P, D’Adamo D, Guo M, Chmielowski B, Le Cesne A, Demetri G, Patel S (2016) Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet 387(10028):1629–1637

    Article  PubMed  CAS  Google Scholar 

  110. Demetri G, Schöffski P, Grignani G, Blay J-Y, Maki R, Van Tine B, Alcindor T, Jones R, D’Adamo D, Guo M, Chawla S (2017) Activity of eribulin in patients with advanced liposarcoma demonstrated in a subgroup analysis from a randomized phase III study of eribulin versus dacarbazine. J Clin Oncol 35(30):3433–3439

    Article  PubMed  Google Scholar 

  111. Shah P, Gau Y, Sabnis G (2014) Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 143(1):99–111

    Article  PubMed  CAS  Google Scholar 

  112. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, Cruickshank S, Miller KD, Lee MJ, Trepel JB (2013) Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol 31(17):2128–2135. https://doi.org/10.1200/JCO.2012.43.7251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NPAD., Pinto C, Soo ETL, van Denderen BJW, Hill P, Ramsay RG, Sarcevic B, Newgreen DF, Thompson EW (2013) Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 15(6):R113-R113. https://doi.org/10.1186/bcr3580

    Article  CAS  Google Scholar 

  114. Hugo HJ, Gunasinghe NPAD., Hollier BG, Tanaka T, Blick T, Toh A, Hill P, Gilles C, Waltham M, Thompson EW (2017) Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin. Breast Cancer Res 19:86. https://doi.org/10.1186/s13058-017-0880-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Li J, Yang S, Yan W, Yang J, Qin Y-J, Lin X-L, Xie R-Y, Wang S-C, Jin W, Gao F, Shi J-W, Zhao W-T, Jia J-S, Shen H-F, Ke J-R, Liu B, Zhao Y-Q, Huang W-H, Yao K-T, Li D-J, Xiao D (2015) MicroRNA-19 triggers epithelial-mesenchymal transition of lung cancer cells accompanied by growth inhibition. Lab Invest 95(9):1056–1070

    Article  PubMed  CAS  Google Scholar 

  116. Bouris P, Skandalis SS, Piperigkou Z, Afratis N, Karamanou K, Aletras AJ, Moustakas A, Theocharis AD, Karamanos NK (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 43:42–60. https://doi.org/10.1016/j.matbio.2015.02.008

    Article  PubMed  CAS  Google Scholar 

  117. Rosanò L, Cianfrocca R, Spinella F, Di Castro V, Nicotra M, Lucidi A, Ferrandina G, Natali P, Bagnato A (2011) Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin Cancer Res 17(8):2350–2360

    Article  PubMed  CAS  Google Scholar 

  118. Sánchez Tilló E, Fanlo L, Siles L, Montes Moreno S, Moros A, Chiva Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, Roué G, Postigo A (2014) The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ 21(2):247–257

    Article  PubMed  CAS  Google Scholar 

  119. Sun Y, Guan Z, Liang L, Cheng Y, Zhou J, Li J, Xu Y (2016) NF-κB signaling plays irreplaceable roles in cisplatin-induced bladder cancer chemoresistance and tumor progression. Int J Oncol 48(1):225–234

    Article  PubMed  CAS  Google Scholar 

  120. Willipinski Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, Heukeshoven J, Pantel K (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11(22):8006–8014

    Article  PubMed  CAS  Google Scholar 

  121. Seshadri R, Raymond WA, Leong AS, Horsfall DJ, McCaul K (1996) Vimentin expression is not associated with poor prognosis in breast cancer. Int J Cancer 67(3):353–356

    Article  PubMed  CAS  Google Scholar 

  122. Montserrat N, Gallardo A, Escuin D, Catasus L, Prat J, Gutiérrez Avignó F, Peiró G, Barnadas A, Lerma E (2011) Repression of E-cadherin by SNAIL, ZEB1, and TWIST in invasive ductal carcinomas of the breast: a cooperative effort? Hum Pathol 42(1):103–110

    Article  PubMed  CAS  Google Scholar 

  123. Withers HR, Taylor JM, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27(2):131–146

    Article  PubMed  CAS  Google Scholar 

  124. Huang Z, Mayr NA, Gao M, Lo SS, Wang JZ, Jia G, Yuh WTC (2012) The onset time of tumor repopulation for cervical cancer—first evidence from clinical data. Int J Radiat Oncol Biol Phys 84(2):478–484. https://doi.org/10.1016/j.ijrobp.2011.12.037

    Article  PubMed  PubMed Central  Google Scholar 

  125. Maciejewski B, Majewski S (1991) Dose fractionation and tumour repopulation in radiotherapy for bladder cancer. Radiother Oncol 21(3):163–170

    Article  PubMed  CAS  Google Scholar 

  126. Stephens TC, Peacock JH (1977) Tumour volume response, initial cell kill and cellular repopulation in B16 melanoma treated with cyclophosphamide and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. Br J Cancer 36(3):313–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wu L, Tannock I (2003) Repopulation in murine breast tumors during and after sequential treatments with cyclophosphamide and 5-fluorouracil. Cancer Res 63(9):2134–2138

    PubMed  CAS  Google Scholar 

  128. Wu C-T, Chen W-C, Liao S-K, Hsu C-L, Lee K-D, Chen M-F (2007) The radiation response of hormone-resistant prostate cancer induced by long-term hormone therapy. Endocr Relat Cancer 14(3):633–643

    Article  PubMed  CAS  Google Scholar 

  129. Bourhis J, Wilson G, Wibault P, Janot F, Bosq J, Armand JP, Luboinski B, Malaise EP, Eschwege F (1994) Rapid tumor cell proliferation after induction chemotherapy in oropharyngeal cancer. Laryngoscope 104(4):468–472

    Article  PubMed  CAS  Google Scholar 

  130. Kajita M, McClinic KN, Wade PA (2004) Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24(17):7559–7566. https://doi.org/10.1128/MCB.24.17.7559-7566.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL (2011) TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 71(13):4707–4719. https://doi.org/10.1158/0008-5472.CAN-10-4554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mikami S, Mizuno R, Kosaka T, Saya H, Oya M, Okada Y (2015) Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer 136(7):1504–1514

    Article  PubMed  CAS  Google Scholar 

  133. Lombardo Y, Faronato M, Filipovic A, Vircillo V, Magnani L, Coombes RC (2014) Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Res 16(3):R62-R62. https://doi.org/10.1186/bcr3675

    Article  Google Scholar 

  134. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:396076. https://doi.org/10.1155/2011/396076

    Article  PubMed  CAS  Google Scholar 

  135. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, Hong S, Adams A, D’Angelo R, Ginestier C, Charafe-Jauffret E, Clouthier SG, Birnbaum D, Wong ST, Zhan M, Chang JC, Wicha MS (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91. https://doi.org/10.1016/j.stemcr.2013.11.009

    Article  CAS  Google Scholar 

  136. Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12(1):R13. https://doi.org/10.1186/bcr2479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, Dewhirst M, Bigner D, Rich J (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  PubMed  CAS  Google Scholar 

  138. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133(+)cancer stem cells in glioblastoma. Mol Cancer 5:67–67. https://doi.org/10.1186/1476-4598-5-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bourguignon LYW, Wong G, Earle C, Chen L (2012) Hyaluronan-CD44v3 interaction with Oct4-Sox2-nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287(39):32800–32824. https://doi.org/10.1074/jbc.M111.308528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J (2013) Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 73(2):662–671. https://doi.org/10.1158/0008-5472.CAN-12-0653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gu A, Jie Y, Yao Q, Zhang Y, Mingyan E (2017) Slug is associated with tumor metastasis and angiogenesis in ovarian cancer. Reprod Sci 24(2):291–299

    Article  PubMed  CAS  Google Scholar 

  142. Zhang Y, Liu Y, Zou J, Yan L, Du W, Zhang Y, Sun H, Lu P, Geng S, Gu R, Zhang H, Bi Z (2017) Tetrahydrocurcumin induces mesenchymal-epithelial transition and suppresses angiogenesis by targeting HIF-1α and autophagy in human osteosarcoma. Oncotarget 8(53):91134–91149. https://doi.org/10.18632/oncotarget.19845

    Article  PubMed  PubMed Central  Google Scholar 

  143. Xu H, Rahimpour S, Nesvick CL, Zhang X, Ma J, Zhang M, Zhang G, Wang L, Yang C, Hong CS, Germanwala AV, Elder JB, Ray-Chaudhury A, Yao Y, Gilbert MR, Lonser RR, Heiss JD, Brady RO, Mao Y, Qin J, Zhuang Z (2015) Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget 6(14):11882–11893

    Article  PubMed  PubMed Central  Google Scholar 

  144. Luo J, Lubaroff DM, Hendrix MJ (1999) Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res 59(15):3552–3556

    PubMed  CAS  Google Scholar 

  145. Llorens A, Rodrigo I, López Barcons L, Gonzalez Garrigues M, Lozano E, Vinyals A, Quintanilla M, Cano A, Fabra A (1998) Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 78(9):1131–1142

    PubMed  CAS  Google Scholar 

  146. Ungefroren H, Witte D, Lehnert H (2017) The role of small GTPases of the Rho/Rac family in TGF-beta-induced EMT and cell motility in cancer. Dev Dyn. https://doi.org/10.1002/dvdy.24505

    Article  PubMed  Google Scholar 

  147. Yang W-H, Lan H-Y, Huang C-H, Tai S-K, Tzeng C-H, Kao S-Y, Wu K-J, Hung M-C, Yang M-H (2012) RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14(4):366–374

    Article  PubMed  CAS  Google Scholar 

  148. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grünert S (2002) Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156(2):299–314. https://doi.org/10.1083/jcb.200109037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Kudo Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206

    Article  PubMed  CAS  Google Scholar 

  150. Muraoka Cook R, Kurokawa H, Koh Y, Forbes J, Roebuck LR, Barcellos Hoff M, Moody S, Chodosh L, Arteaga C (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64(24):9002–9011

    Article  PubMed  CAS  Google Scholar 

  151. Kakeji Y, Maehara Y, Ikebe M, Teicher BA (1997) Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-beta levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. Int J Radiat Oncol Biol Phys 37(5):1115–1123

    Article  PubMed  CAS  Google Scholar 

  152. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Investig 93(2):892–899

    Article  PubMed  CAS  Google Scholar 

  153. Skowron MA, Niegisch G, Fritz G, Arent T, van Roermund JGH, Romano A, Albers P, Schulz WA, Hoffmann MJ (2015) Phenotype plasticity rather than repopulation from CD90/CK14 + cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines. J Exp Clinical Cancer Res 34:144. https://doi.org/10.1186/s13046-015-0259-x

    Article  CAS  Google Scholar 

  154. DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, Kuperwasser C (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69(13):5364–5373. https://doi.org/10.1158/0008-5472.CAN-08-4135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Piva MBR, Jakubzig B, Bendas G (2017) Integrin activation contributes to lower cisplatin sensitivity in MV3 melanoma cells by inducing the wnt signalling pathway. Cancers 9(9):125. https://doi.org/10.3390/cancers9090125

    Article  PubMed Central  Google Scholar 

  156. Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL, Ford CE (2013) The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 13:174–174. https://doi.org/10.1186/1471-2407-13-174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. van Putten LM, Kram LK, van Dierendonck HH, Smink T, Füzy M (1975) Enhancement by drugs of metastatic lung nodule formation after intravenous tumour cell injection. Int J Cancer 15(4):588–595

    Article  PubMed  Google Scholar 

  158. Vollmer TL, Conley FK (1984) Effect of cyclophosphamide on survival of mice and incidence of metastatic tumor following intravenous and intracardial inoculation of tumor cells. Cancer Res 44(9):3902–3906

    PubMed  CAS  Google Scholar 

  159. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. https://doi.org/10.1016/j.ccr.2009.01.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. https://doi.org/10.1016/j.ccr.2009.01.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chen L, Xiong Y, Li J, Zheng X, Zhou Q, Turner A, Wu C, Lu B, Jiang J (2017) PD-L1 expression promotes epithelial to mesenchymal transition in human esophageal cancer. Cell Physiol Biochem 42(6):2267–2280

    Article  PubMed  CAS  Google Scholar 

  162. Hirai M, Kitahara H, Kobayashi Y, Kato K, Bou Gharios G, Nakamura H, Kawashiri S (2017) Regulation of PD-L1 expression in a high-grade invasive human oral squamous cell carcinoma microenvironment. Int J Oncol 50(1):41–48

    Article  PubMed  CAS  Google Scholar 

  163. Kim S, Koh J, Kim M-Y, Kwon D, Go H, Kim YA, Jeon YK, Chung DH (2016) PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Hum Pathol 58:7–14. https://doi.org/10.1016/j.humpath.2016.07.007

    Article  PubMed  CAS  Google Scholar 

  164. Critelli R, Milosa F, Faillaci F, Condello R, Turola E, Marzi L, Lei B, Dituri F, Andreani S, Sighinolfi P, Manni P, Maiorana A, Caporali C, di Benedetto F, Del Buono M, De Maria N, Schepis F, Martinez-Chantar M-L, Giannelli G, Villa E (2017) Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis 8:e3017. https://doi.org/10.1038/cddis.2017.395. https://www.nature.com/articles/cddis2017395#supplementary-information

  165. McNiel EA, Tsichlis PN (2017) Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1. Signal Transduction Targeted Ther 2:16045. https://doi.org/10.1038/sigtrans.2016.45

    Article  Google Scholar 

  166. Yao J, Caballero O, Huang Y, Lin C, Rimoldi D, Behren A, Cebon J, Hung M-C, Weinstein J, Strausberg R, Zhao Q (2016) Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol Res 4(6):552–561

    Article  PubMed  CAS  Google Scholar 

  167. Lou Y, Diao L, Cuentas ERP, Denning W, Chen L, Fan Y, Byers L, Wang J, Papadimitrakopoulou V, Behrens C, Rodriguez J, Hwu P, Wistuba I, Heymach J, Gibbons D (2016) Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res 22(14):3630–3642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Lou Y, Diao L, Cuentas ERP, Denning WL, Chen L, Fan Y, Byers LA, Wang J, Papadimitrakopoulou V, Behrens C, Rodriguez JC, Hwu P, Wistuba II, Heymach JV, Gibbons DL (2016) Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clinical Cancer Res 22(14):3630–3642. https://doi.org/10.1158/1078-0432.CCR-15-1434

    Article  CAS  Google Scholar 

  169. Shimoji M, Shimizu S, Sato K, Suda K, Kobayashi Y, Tomizawa K, Takemoto T, Mitsudomi T (2016) Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer 98:69–75. https://doi.org/10.1016/j.lungcan.2016.04.021

    Article  PubMed  Google Scholar 

  170. Qiu X, Hu D, Chen W-Q, Chen R, Qian S, Li C, Li Y, Xiong X, Liu D, Pan F, Yu S, Chen X (2018) PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta 1864(5):1754–1769

    Article  PubMed  CAS  Google Scholar 

  171. Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn Y-H, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal J, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM, Qin FX-F (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241–5241. https://doi.org/10.1038/ncomms6241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Leduc C, Adam J, Louvet E, Sourisseau T, Dorvault N, Bernard M, Maingot E, Faivre L, Cassin Kuo M-S, Boissier E, Dessoliers M-C, Robin A, Casiraghi O, Even C, Temam S, Olaussen K, Soria J-C, Postel Vinay S (2018) TPF induction chemotherapy increases PD-L1 expression in tumour cells and immune cells in head and neck squamous cell carcinoma. ESMO Open 3(1):e000257

    Article  PubMed  PubMed Central  Google Scholar 

  173. Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F, Semenza GL (2018) Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA 115(6):E1239–E1248. https://doi.org/10.1073/pnas.1718197115

    Article  CAS  Google Scholar 

  174. Funaki S, Shintani Y, Kawamura T, Kanzaki R, Minami M, Okumura M (2017) Chemotherapy enhances programmed cell death 1/ligand 1 expression via TGF-β induced epithelial mesenchymal transition in non-small cell lung cancer. Oncol Rep 38(4):2277–2284

    Article  PubMed  Google Scholar 

  175. Wangpaichitr M, Kandemir H, Li YY, Wu C, Nguyen DJM, Feun LG, Kuo MT, Savaraj N (2017) Relationship of metabolic alterations and PD-L1 expression in cisplatin resistant lung cancer. Cell Dev Biol 6(2):183

    PubMed  PubMed Central  Google Scholar 

  176. Jure-Kunkel M, Masters G, Girit E, Dito G, Lee F, Hunt JT, Humphrey R (2013) Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol Immunother 62(9):1533–1545. https://doi.org/10.1007/s00262-013-1451-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Eisenhauer EA, Trudeau M (1995) An overview of phase II studies of docetaxel in patients with metastatic breast cancer. Eur J Cancer 31A(Suppl 4):S11–S13

    Google Scholar 

  178. Blum JL, Barrios CH, Feldman N, Verma S, McKenna EF, Lee LF, Scotto N, Gralow J (2012) Pooled analysis of individual patient data from capecitabine monotherapy clinical trials in locally advanced or metastatic breast cancer. Breast Cancer Res Treat 136(3):777–788. https://doi.org/10.1007/s10549-012-2288-x

    Article  PubMed  CAS  Google Scholar 

  179. Kwok W, Ling M-T, Lee T-W, Lau TCM, Zhou C, Zhang X, Chua C, Chan K, Chan F, Glackin C, Wong Y-C, Wang X (2005) Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65(12):5153–5162

    Article  PubMed  CAS  Google Scholar 

  180. Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Masubuchi D, Fukunaka Y, Yasuniwa Y, Naito S, Nishizawa S, Sasaguri Y, Kohno K (2009) Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res 69(7):3148–3156

    Article  PubMed  CAS  Google Scholar 

  181. van Soest RJ, de Wit R (2015) Irrefutable evidence for the use of docetaxel in newly diagnosed metastatic prostate cancer: results from the STAMPEDE and CHAARTED trials. BMC Med 13:304. https://doi.org/10.1186/s12916-015-0543-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, Uesugi M, Agoulnik S, Taylor N, Funahashi Y, Matsui J (2014) Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial–mesenchymal transition (EMT) to mesenchymal–epithelial transition (MET) states. Br J Cancer 110(6):1497–1505. https://doi.org/10.1038/bjc.2014.80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT (2017) The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36(2):242–253

    Article  PubMed  CAS  Google Scholar 

  184. Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT (2017) The ERK–ZEB1 pathway mediates epithelial–mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36(2):242–253. https://doi.org/10.1038/onc.2016.195

    Article  PubMed  CAS  Google Scholar 

  185. Duran GE, Wang YC, Moisan F, Francisco EB, Sikic BI (2017) Decreased levels of baseline and drug-induced tubulin polymerisation are hallmarks of resistance to taxanes in ovarian cancer cells and are associated with epithelial-to-mesenchymal transition. Br J Cancer 116(10):1318–1328. https://doi.org/10.1038/bjc.2017.102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Behbahani G, Ghahhari N, Javidi M, Molan A, Feizi N, Babashah S (2017) MicroRNA-mediated post-transcriptional regulation of epithelial to mesenchymal transition in cancer. Pathol Oncol Res 23(1):1–12

    Article  PubMed  CAS  Google Scholar 

  187. Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z (2012) Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 181(6):2188–2201. https://doi.org/10.1016/j.ajpath.2012.08.011

    Article  PubMed  CAS  Google Scholar 

  188. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker Radtke A, McConkey D, Bar Eli M, Dinney C (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15(16):5060–5072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Slaby O, Laga R, Sedlacek O (2017) Therapeutic targeting of non-coding RNAs in cancer. Biochem J 474(24):4219–4251

    Article  PubMed  CAS  Google Scholar 

  190. van Zandwijk N, Pavlakis N, Kao S, Linton A, Boyer M, Clarke S, Huynh Y, Chrzanowska A, Fulham M, Bailey D, Cooper W, Kritharides L, Ridley L, Pattison S, MacDiarmid J, Brahmbhatt H, Reid G (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18(10):1386–1396

    Article  PubMed  Google Scholar 

  191. Zhao J, Dong D, Sun L, Zhang G (2014) Prognostic significance of the epithelial-to-mesenchymal transition markers e-cadherin, vimentin and twist in bladder cancer. Int Braz J Urol 40(2):179–189

    Article  PubMed  Google Scholar 

  192. Scherbakov AM, Andreeva OE, Shatskaya VA, Krasil’nikov MA (2012) The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 113(6):2147–2155. https://doi.org/10.1002/jcb.24087

    Article  PubMed  CAS  Google Scholar 

  193. Witta S, Gemmill R, Hirsch F, Coldren C, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan D, Sugita M, Chan Z, Baron A, Franklin W, Drabkin H, Girard L, Gazdar A, Minna J, Bunn P (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66(2):944–950

    Article  PubMed  CAS  Google Scholar 

  194. Ren J, Chen Y, Song H, Chen L, Wang R (2013) Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J Cell Biochem 114(6):1395–1403

    Article  PubMed  CAS  Google Scholar 

  195. Garcia Bloj B, Moses C, Sgro A, Plani Lam J, Arooj M, Duffy C, Thiruvengadam S, Sorolla A, Rashwan R, Mancera R, Leisewitz A, Swift Scanlan T, Corvalan A, Blancafort P (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 7(37):60535–60554

    Article  PubMed  PubMed Central  Google Scholar 

  196. Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL, Ford CE (2013) The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 13:174. https://doi.org/10.1186/1471-2407-13-174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Buonato J, Lazzara M (2014) ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 74(1):309–319

    Article  PubMed  CAS  Google Scholar 

  198. Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, Lander E (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z (2014) Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem 386(1–2):63–71. https://doi.org/10.1007/s11010-013-1845-x

    Article  PubMed  CAS  Google Scholar 

  200. Saini NYX (2017) Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin 2017:1–11

    Google Scholar 

  201. Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch M-E (2017) The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. Breast Cancer 9:495–514. https://doi.org/10.2147/BCTT.S139963

    Article  PubMed  Google Scholar 

  202. Kast R, Skuli N, Karpel Massler G, Frosina G, Ryken T, Halatsch M-E (2017) Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen. Oncotarget 8(37):60727–60749

    Article  PubMed  PubMed Central  Google Scholar 

  203. el Ghouzzi V, Le Merrer M, Perrin Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato Bellemin AL, Munnich A, Bonaventure J (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15(1):42–46

    Article  PubMed  Google Scholar 

  204. Chen ZF, Behringer RR (1995) twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9(6):686–699

    Article  PubMed  CAS  Google Scholar 

  205. Tan J, Tedrow JR, Nouraie M, Dutta JA, Miller DT, Li X, Yu S, Chu Y, Juan-Guardela B, Kaminski N, Ramani K, Biswas PS, Zhang Y, Kass DJ (2017) Loss of Twist1 in the mesenchymal compartment promotes increased fibrosis in experimental lung injury by enhanced expression of C-X-C motif ligand 12 (CXCL12). J Immunol 198(6):2269–2285. https://doi.org/10.4049/jimmunol.1600610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Palumbo ZK, Soare A, Zerr P, Liebl A, Mancuso R, Tomcik M, Sumova B, Dees C, Chen C-W, Wohlfahrt T, Mallano T, Distler A, Ramming A, Gelse K, Mihai C, Distler O, Schett G, Distler JHW (2017) Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Ann Rheum Dis 76(1):244–251

    Article  CAS  Google Scholar 

  207. Mammoto T, Jiang E, Jiang A, Lu Y, Juan AM, Chen J, Mammoto A (2013) Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering tie2 expression. PLoS ONE 8(9):e73407. https://doi.org/10.1371/journal.pone.0073407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Dong C-Y, Liu X-Y, Wang N, Wang L-N, Yang B-X, Ren Q, Liang H-Y, Ma X-T (2014) Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development. Stem Cells 32(12):3173–3182

    Article  PubMed  CAS  Google Scholar 

  209. Xu Y, Xu Y, Liao L, Zhou N, Theissen SM, Liao X-H, Nguyen H, Ludwig T, Qin L, Martinez JD, Jiang J, Xu J (2013) Inducible knockout of twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting twist1 as a preferential cancer target. Am J Pathol 183(4):1281–1292. https://doi.org/10.1016/j.ajpath.2013.06.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Tukel T, Šošić D, Al-Gazali LI, Erazo M, Casasnovas J, Franco HL, Richardson JA, Olson EN, Cadilla CL, Desnick RJ (2010) Homozygous nonsense mutations in TWIST2 cause setleis syndrome. Am J Hum Genet 87(2):289–296. https://doi.org/10.1016/j.ajhg.2010.07.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Šošić D, Richardson J, Yu K, Ornitz D, Olson E (2003) Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112(2):169–180

    Article  PubMed  Google Scholar 

  212. Sharabi AB, Aldrich M, Sosic D, Olson EN, Friedman AD, Lee S-H, Chen S-Y (2008) Twist-2 controls myeloid lineage development and function. PLoS Biol 6(12):e316. https://doi.org/10.1371/journal.pbio.0060316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T (2001) The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21(23):8184–8188. https://doi.org/10.1128/MCB.21.23.8184-8188.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Simon Tillaux N, Hertig A (2017) Snail and kidney fibrosis. Nephrol Dial Transplant 32(2):224–233

    PubMed  Google Scholar 

  215. Shirley SH, Hudson LG, He J, Kusewitt DF (2010) The skinny on slug. Mol Carcinog 49(10):851–861. https://doi.org/10.1002/mc.20674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Hudson LG, Newkirk KM, Chandler HL, Choi C, Fossey SL, Parent AE, Kusewitt DF (2009) Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J Dermatol Sci 56(1):19–26. https://doi.org/10.1016/j.jdermsci.2009.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Takagi T, Moribe H, Kondoh H, Higashi Y (1998) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125(1):21–31

    PubMed  CAS  Google Scholar 

  218. Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y (2003) Mice lacking Zfhx1b, the gene that codes for smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of hirschsprung disease–mental retardation syndrome. Am J Hum Genet 72(2):465–470

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sintov E, Nathan G, Knoller S, Pasmanik-Chor M, Russ HA, Efrat S (2015) Inhibition of ZEB1 expression induces redifferentiation of adult human β cells expanded in vitro. Sci Rep 5:13024. https://doi.org/10.1038/srep13024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Siles L, Sánchez-Tilló E, Lim J-W, Darling DS, Kroll KL, Postigo A (2013) ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. Mol Cell Biol 33(7):1368–1382. https://doi.org/10.1128/MCB.01259-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Li J, Riedt T, Goossens S, Carrillo García C, Szczepanski S, Brandes M, Pieters T, Dobrosch L, Gütgemann I, Farla N, Radaelli E, Hulpiau P, Mallela N, Fröhlich H, La Starza R, Matteucci C, Chen T, Brossart P, Mecucci C, Huylebroeck D, Haigh J, Janzen V (2017) The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling. Blood 129(4):460–472

    Article  PubMed  CAS  Google Scholar 

  222. Weng Q, Chen Y, Wang H, Xu X, Yang B, He Q, Shou W, Chen Y, Higashi Y, van den Berghe V, Seuntjens E, Kernie SG, Bukshpun P, Sherr EH, Huylebroeck D, Lu QR (2012) Dual-mode modulation of smad signaling by smad-interacting protein Sip1 is required for myelination in the CNS. Neuron 73(4):713–728. https://doi.org/10.1016/j.neuron.2011.12.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Denecker G, Vandamme N, Akay Ö, Koludrovic D, Taminau J, Lemeire K, Gheldof A, De Craene B, Van Gele M, Brochez L, Udupi GM, Rafferty M, Balint B, Gallagher WM, Ghanem G, Huylebroeck D, Haigh J, van den Oord J, Larue L, Davidson I, Marine JC, Berx G (2014) Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 21(8):1250–1261. https://doi.org/10.1038/cdd.2014.44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Haydon RC, Luu HH, He T-C (2007) Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthop Relat Res 454:237–246. https://doi.org/10.1097/BLO.0b013e31802b683c

    Article  PubMed  Google Scholar 

  225. Ishikawa T, Shimizu T, Ueki A, Yamaguchi S, Onishi N, Sugihara E, Kuninaka S, Miyamoto T, Morioka H, Nakayama R, Kobayashi E, Toyama Y, Mabuchi Y, Matsuzaki Y, Yamaguchi R, Miyano S, Saya H (2013) Twist2 functions as a tumor suppressor in murine osteosarcoma cells. Cancer Sci 104(7):880–888

    Article  PubMed  CAS  Google Scholar 

  226. Man T-K, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, Johnson M, Davino N, Murray J, Helman L, Meyer W, Triche T, Wong K-K, Lau CC (2005) Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res 65(18):8142–8150. https://doi.org/10.1158/0008-5472.Can-05-0985

    Article  PubMed  CAS  Google Scholar 

  227. Yang H, Zhang Y, Zhou Z, Jiang X, Shen A (2011) Snail-1 regulates VDR signaling and inhibits 1,25(OH)-D3 action in osteosarcoma. Eur J Pharmacol 670(2):341–346. https://doi.org/10.1016/j.ejphar.2011.09.160

    Article  PubMed  CAS  Google Scholar 

  228. Larriba MJ, Bonilla F, Muñoz A (2010) The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression. J Steroid Biochem Mol Biol 121(1):106–109. https://doi.org/10.1016/j.jsbmb.2010.01.014

    Article  PubMed  CAS  Google Scholar 

  229. Sharili A-S, Allen S, Smith K, Hargreaves J, Price J, McGonnell I (2011) Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy. Tumor Biol 32(3):515–526. https://doi.org/10.1007/s13277-010-0146-1

    Article  CAS  Google Scholar 

  230. Aidong S, Yunqing Z, Huiguang Y, Ruisheng X, Guowei H (2012) Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J Surg Oncol 105(8):830–834. https://doi.org/10.1002/jso.23012

    Article  CAS  Google Scholar 

  231. Wensman H, Göransson H, Leuchowius K-J, Strömberg S, Pontén F, Isaksson A, Rutteman GR, Heldin N-E, Pejler G, Hellmén E (2009) Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas. Breast Cancer Res Treat 118(2):333–343. https://doi.org/10.1007/s10549-008-0243-7

    Article  PubMed  CAS  Google Scholar 

  232. Fenaux P, Le Deley MC, Castaigne S, Archimbaud E, Chomienne C, Link H, Guerci A, Duarte M, Daniel MT, Bowen D (1993) Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91. Group. Blood 82(11):3241–3249

    PubMed  CAS  Google Scholar 

  233. Dutcher J, Lee S, Gallagher R, Makary A, Hines J, Londer H, Farnen J, Bennett J, Paietta E, Rowe J, Goloubeva O, Wiernik P (2005) Phase II study of all-trans retinoic acid in the accelerated phase or early blastic phase of chronic myeloid leukemia: a study of the Eastern Cooperative Oncology Group (E1993). Leuk Lymphoma 46(3):377–385

    Article  PubMed  CAS  Google Scholar 

  234. Visani G, Tosi P, Manfroi S, Ottaviani E, Finelli C, Cenacchi A, Bendandi M, Tura S (1995) All-trans retinoic acid in the treatment of myelodysplastic syndromes. Leuk Lymphoma 19(3–4):277–280

    Article  PubMed  CAS  Google Scholar 

  235. Yang J-Z, Lian W-G, Sun L-X, Qi D-W, Ding Y, Zhang X-H (2016) High nuclear expression of Twist1 in the skeletal extramedullary disease of myeloma patients predicts inferior survival. Pathol Res Pract 212(3):210–216

    Article  PubMed  CAS  Google Scholar 

  236. Cosset E, Hamdan G, Jeanpierre S, Voeltzel T, Sagorny K, Hayette S, Mahon F-X, Dumontet C, Puisieux A, Nicolini F, Maguer Satta V (2011) Deregulation of TWIST-1 in the CD34 + compartment represents a novel prognostic factor in chronic myeloid leukemia. Blood 117(5):1673–1676

    Article  PubMed  CAS  Google Scholar 

  237. Xin H, Kong Y, Jiang X, Wang K, Qin X, Miao Z-H, Zhu Y, Tan W (2013) Multi-drug-resistant cells enriched from chronic myeloid leukemia cells by Doxorubicin possess tumor-initiating-cell properties. J Pharmacol Sci 122(4):299–304

    Article  PubMed  CAS  Google Scholar 

  238. Mancini M, Petta S, Iacobucci I, Salvestrini V, Barbieri E, Santucci M (2010) Zinc-finger transcription factor slug contributes to the survival advantage of chronic myeloid leukemia cells. Cell Signal 22(8):1247–1253

    Article  PubMed  CAS  Google Scholar 

  239. Sun Y, Pan J, Mao S, Jin J (2014) IL-17/miR-192/IL-17Rs regulatory feedback loop facilitates multiple myeloma progression. PLoS ONE 9(12):e114647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Lemma S, Karihtala P, Haapasaari K-M, Jantunen E, Soini Y, Bloigu R, Pasanen A-K, Turpeenniemi Hujanen T, Kuittinen O (2013) Biological roles and prognostic values of the epithelial-mesenchymal transition-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology 62(2):326–333

    Article  PubMed  Google Scholar 

  241. Stavropoulou V, Kaspar S, Brault L, Sanders M, Juge S, Morettini S, Tzankov A, Iacovino M, Lau IJ, Milne T, Royo H, Kyba M, Valk PJM, Peters AHFM., Schwaller J (2016) MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing emt-related genes linked to poor outcome. Cancer Cell 30(1):43–58

    Article  PubMed  CAS  Google Scholar 

  242. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, Xiao L, Hu X, Liu BH, Yang J, Li YY, Chen S, Eaves CJ, Wu D, Zhao Y (2015) Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene 34(23):3000–3010

    Article  PubMed  CAS  Google Scholar 

  243. Thathia S, Ferguson S, Gautrey H, van Otterdijk S, Hili M, Rand V, Moorman A, Meyer S, Brown R, Strathdee G (2012) Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 97(3):371–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Nakahata S, Yamazaki S, Nakauchi H, Morishita K (2010) Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 29(29):4157–4169

    Article  PubMed  CAS  Google Scholar 

  245. Mishra A, La Perle K, Kwiatkowski S, Sullivan L, Sams G, Johns J, Curphey D, Wen J, McConnell K, Qi J, Wong H, Russo G, Zhang J, Marcucci G, Bradner J, Porcu P, Caligiuri M (2016) Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discov 6(9):986–1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Cui J, Gong M, He Y, Li Q, He T, Bi Y (2016) All-trans retinoic acid inhibits proliferation, migration, invasion and induces differentiation of hepa1-6 cells through reversing EMT in vitro. Int J Oncol 48(1):349–357

    Article  PubMed  CAS  Google Scholar 

  247. Zanetti A, Affatato R, Centritto F, Fratelli M, Kurosaki M, Barzago MM, Bolis M, Terao M, Garattini E, Paroni G (2015) All-trans-retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells: role of Notch1 and transforming growth factor (TGFβ). J Biol Chem 290(29):17690–17709. https://doi.org/10.1074/jbc.M115.638510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Lan L, Deng W, Chen HL, Huo LL, Deng LL, Zhang GY, Luo Y (2016) All-trans retinoic acid improves iodine uptake of thyroid cancer cells via repressing transcriptional activity of β-catenin. Zhonghua yi Xue za Zhi 96(7):553–558

    PubMed  CAS  Google Scholar 

  249. Schultze E, Collares T, Lucas CG, Seixas FK (2018) Synergistic and additive effects of ATRA in combination with different anti-tumor compounds. Chem Biol Interact 285:69–75. https://doi.org/10.1016/j.cbi.2018.02.021

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Redfern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redfern, A.D., Spalding, L.J. & Thompson, E.W. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 35, 285–308 (2018). https://doi.org/10.1007/s10585-018-9906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9906-x

Keywords

Navigation