Skip to main content
Log in

Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1

  • Technical Notes in Metastasis Research
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Imaging is broadly used in biomedical research, but signal variation complicates automated analysis. Using the Pulmonary Metastasis Assay (PuMA) to study metastatic colonization by the metastasis suppressor KISS1, we cultured GFP-expressing melanoma cells in living mouse lung ex vivo for 3 weeks. Epifluorescence images of cells were used to measure growth, creating large datasets which were time consuming and challenging to quantify manually due to scattering of light from outside the focal plane. To address these challenges, we developed an automated workflow to standardize the measurement of disseminated cancer cell growth by applying statistical quality control to remove unanalyzable images followed and a filtering algorithm to quantify only in-focus cells. Using this tool, we demonstrate that expression of the metastasis suppressor KISS1 does not suppress growth of melanoma cells in the PuMA, in contrast to the robust suppression of lung metastasis observed in vivo. This result may suggest that a factor required for metastasis suppression is present in vivo but absent in the PuMA, or that KISS1 suppresses lung metastasis at a step in the metastatic cascade not tested by the PuMA. Together, these data provide a new tool for quantification of metastasis assays and further insight into the mechanism of KISS1 mediated metastasis suppression in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heller D, Hoppe A, Restrepo S, Gatti L, Tournier AL, Tapon N, Basler K, Mao Y (2016) EpiTools: an open-source image analysis toolkit for quantifying epithelial growth dynamics. Dev Cell 36(1):103–116. https://doi.org/10.1016/j.devcel.2015.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li C, Guo J, Cong R, Pang Y, Wang B (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2016.2612882

    Google Scholar 

  3. Henriquez NV, van Overveld PG, Que I, Buijs JT, Bachelier R, Kaijzel EL, Lowik CW, Clezardin P, van der Pluijm G (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24(8):699–705. https://doi.org/10.1007/s10585-007-9115-5

    Article  PubMed  Google Scholar 

  4. Phillips KG, Baker-Groberg SM, McCarty OJ (2014) Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope. J Vis Exp. https://doi.org/10.3791/50988

    Google Scholar 

  5. Mendoza A, Hong S-HH, Osborne T, Khan MA, Campbell K, Briggs J, Eleswarapu A, Buquo L, Ren L, Hewitt SM, Dakir EHlH, Dakir E-Hl-H, Garfield S, Walker R, Merlino G, Green JE, Hunter KW, Wakefield LM, Khanna C (2010) Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Investig 120(8):2979–2988. https://doi.org/10.1172/JCI40252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lizardo MM, Sorensen PH (2018) Practical considerations in studying metastatic lung colonization in osteosarcoma using the pulmonary metastasis assay. J Vis Exp. https://doi.org/10.3791/56332

  7. Keyvani A, Kyle S (2013) A fully-automated image processing technique to improve measurement of suspended particles and flocs by removing out-of-focus objects. Comput Geosci 52:189198. https://doi.org/10.1016/j.cageo.2012.08.018

    Article  Google Scholar 

  8. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737

    Article  CAS  PubMed  Google Scholar 

  9. Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer (Oxford England 1990) 46(7):1283–1289. https://doi.org/10.1016/j.ejca.2010.02.023

    Article  CAS  Google Scholar 

  10. Welch DR, Chen P, Miele ME, McGary CT, Bower JM, Stanbridge EJ, Weissman BE (1993) Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9(1):255–262

    Google Scholar 

  11. Nash KT, Phadke PA, Navenot J-MM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99(4):309–321. https://doi.org/10.1093/jnci/djk053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldberg SF, Harms JF, Quon K, Welch DR (1999) Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 17(7):601–607

    Article  CAS  PubMed  Google Scholar 

  13. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siritantikorn S, Jintaworn S, Noisakran S, Suputtamongkol Y, Paris DH, Blacksell SD (2012) Application of ImageJ program to the enumeration of Orientia tsutsugamushi organisms cultured in vitro. Trans R Soc Trop Med Hyg 106(10):632–635. https://doi.org/10.1016/j.trstmh.2012.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  15. R Development Core Team (2015) R: a language and environment for statistical computing. R Development Core Team, Vienna

    Google Scholar 

  16. MATLAB (2015). vol 8.5.0. The MathWorks Inc., Natick

  17. Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP, Welch DR (2003) Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 63(2):432–440

    CAS  PubMed  Google Scholar 

  18. Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99(4):309–321. https://doi.org/10.1093/jnci/djk053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimura H, Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Kishimoto H, Bouvet M, Hoffman RM (2010) Real-time imaging of single cancer-cell dynamics of lung metastasis. J Cell Biochem 109(1):58–64. https://doi.org/10.1002/jcb.22379

    CAS  PubMed  Google Scholar 

  20. Leong HS, Lizardo MM, Ablack A, McPherson VA, Wandless TJ, Chambers AF, Lewis JD (2012) Imaging the impact of chemically inducible proteins on cellular dynamics in vivo. PLoS ONE 7(1):e30177. https://doi.org/10.1371/journal.pone.0030177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoffman RM (2001) Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30(5):1016–1022

    CAS  PubMed  Google Scholar 

  22. Hedberg-Buenz A, Christopher MA, Lewis CJ, Fernandes KA, Dutca LM, Wang K, Scheetz TE, Abramoff MD, Libby RT, Garvin MK, Anderson MG (2016) Quantitative measurement of retinal ganglion cell populations via histology-based random forest classification. Exp Eye Res 146:370–385. https://doi.org/10.1016/j.exer.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  23. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, Sabatini DM (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 106(6):1826–1831. https://doi.org/10.1073/pnas.0808843106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging Biological Principles of Metastasis. Cell 168(4):670–691. https://doi.org/10.1016/j.cell.2016.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35(4):645–654. https://doi.org/10.1007/s10555-016-9648-7

    Article  PubMed  Google Scholar 

  26. Jerome Friedman TH, Robert Tibshirani (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Article  Google Scholar 

  27. Angeliki M, Nikolaos P, Peter L, Constantine P, Michael K (2008) The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat Rev 34(8):682–692. https://doi.org/10.1016/j.ctrv.2008.05.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Drs. Chand Khanna, DVM, PhD, Michael Lizardo, PhD and Arnulfo Mendoza, DVM for their training in the PuMA. The authors also acknowledge support from the Biostatistics and Informatics Shared Resource of the KU Cancer Center.

Funding

The authors received support from the following organizations: Melanoma Research Foundation (EDY), National Cancer Institute 1F30CA216998 (EDY), CA134981 (DRW) and CA168524 (DRW), the National Foundation for Cancer Research (DRW) and the Hall Family Professorship in Molecular Medicine (DRW).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed experiments: EDY, KS, DRW. Analyzed data: EDY, AFT, JLU, SM, JTM. Wrote first draft of the manuscript: EDY. Contributed to manuscript writing: EDY, KS, AFT, JLU, DRW. Agree with manuscript results and conclusions: EDY, KS, AFT, JLU, SM, JTM, DRW. Developed the structure and arguments for the paper: EDY, KS, JLU, DRW. Made critical revisions and approved final version of the manuscript: EDY, KS, AFT, JLU, JTM, DRW.

Corresponding author

Correspondence to Danny R. Welch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 KB)

Supplementary material 2 (TIF 30350 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, E.D., Strom, K., Tsue, A.F. et al. Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1. Clin Exp Metastasis 35, 77–86 (2018). https://doi.org/10.1007/s10585-018-9882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9882-1

Keywords

Navigation