Clinical & Experimental Metastasis

, Volume 33, Issue 5, pp 487–496 | Cite as

Effect of CD133 overexpression on the epithelial-to-mesenchymal transition in oral cancer cell lines

  • YeonHee Moon
  • Donghwi Kim
  • HongMoon Sohn
  • Wonbong LimEmail author
Research Paper


Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world. In OSCC, CD133 promotes tumor invasion and metastasis by inducing the epithelial-to-mesenchymal transition (EMT). A small subset of cancer cells known as cancer stem cells (CSCs) are thought to give rise to differentiated tumor cells and to predict tumor recurrence and metastases, i.e., CSCs may be metastatic precursors. In this study, we show that ectopic overexpression of CD133 in OSCC cell lines KB, YD9, and YD10B cells significantly promotes the EMT and acquisition of stemness properties. CSC properties were analyzed by colony-formation assay and measurement of OCT4, SOX2, and NANOG expression, and the EMT was monitored by cell migration, a cell invasion assay, and analysis of E-cadherin, N-cadherin, and vimentin expression. CD133 overexpression led to formation of irregular spheroid colonies consistent with a stem cell phenotype and increased the expression of OCT4, SOX2, NANOG, N-cadherin, and vimentin. Taken together, these findings show that elevated levels of CD133 lead to OSCC invasiveness and metastasis, associated with the upregulation of EMT and stemness markers.


CD133 Cancer stem cell Carcinogenesis Epithelial-to-mesenchymal transition 



This study was supported by research funds from Chosun University (2014). The authors declare that they have no conflicts of interest.

Author contributions

All authors have read and approved the final submitted manuscript.

Supplementary material

10585_2016_9793_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 kb)


  1. 1.
    Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359(11):1143–1154CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A et al (2008) Cancer statistics. CA Cancer J Clin 58(2):71–96CrossRefPubMedGoogle Scholar
  3. 3.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456CrossRefPubMedGoogle Scholar
  4. 4.
    DiTroia JF (1972) Nodal metastases and prognosis in carcinoma of the oral cavity. Otolaryngol Clin N Am 5(2):333–342Google Scholar
  5. 5.
    Roepman P et al (2005) An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 37(2):182–186CrossRefPubMedGoogle Scholar
  6. 6.
    Noguti J et al (2012) Metastasis from oral cancer: an overview. Cancer Gen Proteomics 9(5):329–335Google Scholar
  7. 7.
    Hirshberg A et al (2008) Metastatic tumours to the oral cavity—pathogenesis and analysis of 673 cases. Oral Oncol 44(8):743–752CrossRefPubMedGoogle Scholar
  8. 8.
    Ho CM et al (1992) Occult lymph node metastasis in small oral tongue cancers. Head Neck 14(5):359–363CrossRefPubMedGoogle Scholar
  9. 9.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768CrossRefPubMedGoogle Scholar
  10. 10.
    Tirino V et al (2008) Detection and characterization of CD133 + cancer stem cells in human solid tumours. PloS One 3(10):e3469CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu S et al (2015) G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget 6(9):6887–6901CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Angelastro JM, Lame MW (2010) Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res MCR 8(8):1105–1115CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Q et al (2010) A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 289(2):151–160CrossRefPubMedGoogle Scholar
  14. 14.
    Corbeil D et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275(8):5512–5520CrossRefPubMedGoogle Scholar
  15. 15.
    Hilbe W et al (2004) CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol 57(9):965–969CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hemmati HD et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100(25):15178–15183CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chu P et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124(6):1312–1321CrossRefPubMedGoogle Scholar
  18. 18.
    Chiou SH et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095CrossRefPubMedGoogle Scholar
  19. 19.
    Carvalho AL et al (2005) Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer 114(5):806–816CrossRefPubMedGoogle Scholar
  20. 20.
    Yang CC et al (2013) Membrane type 1 matrix metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. BMC Cancer 13:171CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen C et al (2011) Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PloS One 6(1):e16466CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplas 15(2):117–134CrossRefGoogle Scholar
  23. 23.
    Xu MH et al (2014) EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PloS One 9(2):e87893CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823CrossRefPubMedGoogle Scholar
  25. 25.
    Kang HJ, Jang YJ (2012) Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation. Int J Or Sci 4(2):78–84CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lee EJ et al (2005) Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp Mol Med 37(5):379–390CrossRefPubMedGoogle Scholar
  27. 27.
    Pang LY et al (2012) Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition. Vet J 193(1):46–52CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou BB et al (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823CrossRefPubMedGoogle Scholar
  29. 29.
    Uchida N et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Iannolo G et al (2008) Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol 66(1):42–51CrossRefPubMedGoogle Scholar
  31. 31.
    Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214(1):3–9CrossRefPubMedGoogle Scholar
  32. 32.
    Bourguignon LY et al (2012) Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287(39):32800–32824CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gangopadhyay S et al (2013) Breast cancer stem cells: a novel therapeutic target. Clin Breast Cancer 13(1):7–15CrossRefPubMedGoogle Scholar
  34. 34.
    Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • YeonHee Moon
    • 1
  • Donghwi Kim
    • 2
  • HongMoon Sohn
    • 2
  • Wonbong Lim
    • 2
    • 3
    Email author
  1. 1.Department of Dental HygieneChodang UniversityMuan CountySouth Korea
  2. 2.Department of Orthopedic SurgeryChosun University HospitalGwangjuSouth Korea
  3. 3.Department of Premedical Science, College of MedicineChosun UniversityGwangjuSouth Korea

Personalised recommendations