Skip to main content

Advertisement

Log in

HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In human breast cancer, β-catenin localization has been related with disease prognosis. Since HER2-positive patients are an important subgroup, and that in breast cancer cells a direct interaction of β-catenin/HER2 has been reported, in the present study we have explored whether β-catenin location is related with the disease survival. The study was performed in a tumor bank from patients (n = 140) that did not receive specific anti-HER2 therapy. The proteins were detected by immunohistochemistry in serial sections, 47 (33.5 %) patients were HER2-positive with a long follow-up. HER2-positive patients that displayed β-catenin at the plasma membrane (completely surrounding the tumour cells) showed a significant better disease-free survival and overall survival than the patients showing the protein on other locations. Then we explored the dynamics of the co-expression of β-catenin and HER2 in human MCF-7 and SKBR3 cells exposed to different stressful situations. In untreated conditions MCF-7 and SKBR3 cells showed very different β-catenin localization. In MCF-7 cells, cadmium administration caused a striking change in β-catenin localization driving it from plasma membrane to cytoplasmic and perinuclear areas and HER2 showed a similar localization patterns. The changes induced by cadmium were compared with heat shock, H2O2 and tamoxifen treatments. In conclusion, this study shows the dynamical associations of HER2 and β-catenin and their changes in subcellular localizations driven by stressful situations. In addition, we report for the first time the correlation between plasma membrane associated β-catenin in HER2-positive breast cancer and survival outcome, and the importance of the protein localization in breast cancer samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fanelli MA et al (2008) P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 13(2):207–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rosenbluh J, Wang X, Hahn WC (2014) Genomic insights into WNT/beta-catenin signaling. Trends Pharmacol Sci 35(2):103–109

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Gao C, Xiao G, Hu J (2014) Regulation of Wnt/beta-catenin signaling by posttranslational modifications. Cell Biosci 4(1):13

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lopez-Knowles E et al (2010) Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomark Prev 19(1):301–309

    Article  CAS  Google Scholar 

  5. Li S, Sun Y, Li L (2014) The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol 35(8):7693–7698

    Article  CAS  PubMed  Google Scholar 

  6. Kanai Y et al (1995) c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem Biophys Res Commun 208(3):1067–1072

    Article  CAS  PubMed  Google Scholar 

  7. Wang K et al (2007) Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/beta-catenin signaling in HER2 overexpressing human breast cancer cells. Oncol Rep 17(1):89–96

    PubMed  Google Scholar 

  8. Shibata T et al (1996) Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 13(5):883–889

    CAS  PubMed  Google Scholar 

  9. van Veelen W et al (2011) Beta-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 60(9):1204–1212

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schroeder JA et al (2002) ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J Biol Chem 277(25):22692–22698

    Article  CAS  PubMed  Google Scholar 

  11. Sloan EK et al (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174(6):2035–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ciocca DR et al (2012) Absence of caveolin-1 alters heat shock protein expression in spontaneous mammary tumors driven by Her-2/neu expression. Histochem Cell Biol 137(2):187–194

    Article  CAS  PubMed  Google Scholar 

  13. Cuello-Carrion FD et al (2013) In MMTV-Her-2/neu transgenic mammary tumors the absence of caveolin-1-/- alters PTEN and NHERF1 but not beta-catenin expression. Cell Stress Chaperones 18(5):559–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gago FE, Fanelli MA, Ciocca DR (2006) Co-expression of steroid hormone receptors (estrogen receptor alpha and/or progesterone receptors) and Her2/neu (c-erbB-2) in breast cancer: clinical outcome following tamoxifen-based adjuvant therapy. J Steroid Biochem Mol Biol 98(1):36–40

    Article  CAS  PubMed  Google Scholar 

  15. Parker BS et al (2008) Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J Pathol 214(3):337–346

    Article  CAS  PubMed  Google Scholar 

  16. Straif K et al (2009) A review of human carcinogens–part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10(5):453–454

    Article  PubMed  Google Scholar 

  17. Cogliano VJ et al (2011) Preventable exposures associated with human cancers. J Natl Cancer Inst 103(24):1827–1839

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gallagher CM, Chen JJ, Kovach JS (2010) Environmental cadmium and breast cancer risk. Aging (Albany NY) 2(11):804–814

    CAS  Google Scholar 

  19. McElroy JA et al (2006) Cadmium exposure and breast cancer risk. J Natl Cancer Inst 98(12):869–873

    Article  CAS  PubMed  Google Scholar 

  20. Benbrahim-Tallaa L et al (2009) Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype. Environ Health Perspect 117(12):1847–1852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pasha Q et al (2008) Comparative evaluation of trace metal distribution and correlation in human malignant and benign breast tissues. Biol Trace Elem Res 125(1):30–40

    Article  CAS  PubMed  Google Scholar 

  22. Gutiérrez JG et al (2008) Interleukin-12p40 contributes to protection against lung injury after oral Yersinia enterocolitica infection. Inflamm Res 57(11):504–511

    Article  PubMed  Google Scholar 

  23. Liu Y et al (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69(2):581–593

    Article  CAS  PubMed  Google Scholar 

  24. Cuello-Carrion FD, Ciocca DR (1999) Improved detection of apoptotic cells using a modified in situ TUNEL technique. J Histochem Cytochem 47(6):837–839

    Article  CAS  PubMed  Google Scholar 

  25. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Molina R et al (1992) Expression of HER-2/neu oncoprotein in human breast cancer: a comparison of immunohistochemical and western blot techniques. Anticancer Res 12(6B):1965–1971

    CAS  PubMed  Google Scholar 

  27. Ciocca DR et al (1992) Correlation of HER-2/neu amplification with expression and with other prognostic factors in 1103 breast cancers. J Natl Cancer Inst 84(16):1279–1282

    Article  CAS  PubMed  Google Scholar 

  28. Wolff AC et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013

    Article  PubMed  Google Scholar 

  29. Allred DC, O’Connell P, Fuqua SA, Osborne CK (1994) Immunohistochemical studies of early breast cancer evolution. Breast Cancer Res Treat 32(1):13–18

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki H et al (2008) Nuclear beta-catenin expression at the invasive front and in the vessels predicts liver metastasis in colorectal carcinoma. Anticancer Res 28(3B):1821–1830

    PubMed  Google Scholar 

  31. Schade B et al (2013) β-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res 73(14):4474–4487

    Article  CAS  PubMed  Google Scholar 

  32. Cordo Russo RI et al (2014) Targeting ErbB-2 nuclear localization and function inhibits breast cancer growth and overcomes trastuzumab resistance.  Oncogene 2014 Sep 1;0. doi:10.1038/onc.2014.272. [Epub ahead of print]

  33. Hsu MC, Chang HC, Hung WC (2007) HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocr Relat Cancer 14(3):655–667

    Article  CAS  PubMed  Google Scholar 

  34. Incassati A et al (2010) Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res 12(6):213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Khalil S et al (2012) Activation status of Wnt/ss-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse. PLoS ONE 7(3):e33421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Khramtsov AI et al (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920

    Article  PubMed Central  PubMed  Google Scholar 

  37. Pavlakis K et al (2014) p85 Protein expression is associated with poor survival in HER2-positive patients with advanced breast cancer treated with Trastuzumab. Pathol Oncol Res 2014 Aug 8. doi:10.1007/s12253-014-9818-2. [Epub ahead of print]

  38. Subik K et al (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer: Basic Clin Res 4:35–41

    Google Scholar 

  39. Park MH et al (2012) Phosphorylation of beta-catenin at serine 663 regulates its transcriptional activity. Biochem Biophys Res Commun 419(3):543–549

    Article  CAS  PubMed  Google Scholar 

  40. Arias-Romero LE et al (2010) A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 29(43):5839–5849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Arias-Romero LE et al (2013) Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res 73(12):3671–3682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shaiken TE, Opekun AR (2014) Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep 4:4923

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Argentina (CONICET) (PIP to DRC). This work is part of the Thesis (DAO) for the PROBIOL, UNCuyo, Mendoza, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Ciocca.

Additional information

F. Darío Cuello-Carrión, Jorge E. Shortrede, Mariel A. Fanelli and Daniel R. Ciocca have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure (TIFF 56150 kb)

Lipid peroxidation by Thiobarbituric acid-reactive substances (TBARS) in MCF-7 and SKBR3 cells. a Comparative graph of both cell lines after 0, 5, 100 µM Cd administration. b TBARS in MCF-7 cells following 18 µM tamoxifen and after tamoxifen + 5, or 100 µM Cd. TBARS in MCF-7 cells (c) after hyperthermia, hyperthermia + tamoxifen, and hyperthermia + H2O2. TBARS in SKBR3 cells (d) after hyperthermia, and hyperthermia + H2O2. The results represent mean ± SD at least three independent experiments, α = 0.05, *** P < 0.001

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuello-Carrión, F.D., Shortrede, J.E., Alvarez-Olmedo, D. et al. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis 32, 151–168 (2015). https://doi.org/10.1007/s10585-015-9694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9694-5

Keywords

Navigation