Skip to main content

Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins


At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6





Culture medium


Extracellular matrix


Epithelial-mesenchymal transition




Mesenchymal-epithelial transition


Matrix metalloproteinases


Ovarian cancer


Tissue inhibitor of metalloproteinases




  1. 1.

    Kipps E, Tan DSP, Kaye SB (2013) Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13:273–282

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Heyman L, Kellouche S, Fernandes J et al (2008) Vitronectin and its receptors partly mediate adhesion of ovarian cancer cells to peritoneal mesothelium in vitro. Tumour Biol 29:231–244

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Burleson KM, Boente MP, Pambuccian SE et al (2006) Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med 4:6

    PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Shield K, Ackland ML, Ahmed N et al (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113:143–148

    PubMed  Article  Google Scholar 

  5. 5.

    Kenny HA, Kaur S, Coussens LM et al (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118:1367–1379

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Ahmed N, Stenvers KL (2013) Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 3:256

    PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Ayhan A, Gultekin M, Taskiran C et al (2007) Ascites and epithelial ovarian cancers: a reappraisal with respect to different aspects. Int J Gynecol Cancer 17:68–75

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Tan DSP, Agarwal R, Kaye SB (2006) Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 7:925–934

    PubMed  Article  Google Scholar 

  9. 9.

    Puiffe M-L, Le Page C, Filali-Mouhim A et al (2007) Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 9:820–829

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Lane D, Goncharenko-Khaider N, Rancourt C et al (2010) Ovarian cancer ascites protects from TRAIL-induced cell death through alphavbeta5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene 29:3519–3531

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Carduner L, Agniel R, Kellouche S et al (2013) Ovarian cancer ascites-derived vitronectin and fibronectin: combined purification, molecular features and effects on cell response. Biochim Biophys Acta BBA 1830(10):4885–4897

    CAS  Article  Google Scholar 

  12. 12.

    Cruet-Hennequart S, Maubant S, Luis J et al (2003) alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22:1688–1702

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Reuning U (2011) Integrin αvβ3 promotes vitronectin gene expression in human ovarian cancer cells by implicating rel transcription factors. J Cell Biochem 112:1909–1919

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Leroy-Dudal J, Demeilliers C, Gallet O et al (2005) Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. Int J Cancer 114:531–543

    CAS  PubMed  Google Scholar 

  15. 15.

    Carreiras F, Rigot V, Cruet S et al (1999) Migration properties of the human ovarian adenocarcinoma cell line IGROV1: importance of alpha(v)beta3 integrins and vitronectin. Int J Cancer 80:285–294

    CAS  PubMed  Google Scholar 

  16. 16.

    Landen CN, Kim T-J, Lin YG et al (2008) Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 10:1259–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Davidson B, Goldberg I, Gotlieb WH et al (2003) Coordinated expression of integrin subunits, matrix metalloproteinases (MMP), angiogenic genes and Ets transcription factors in advanced-stage ovarian carcinoma: a possible activation pathway? Cancer Metastasis Rev 22:103–115

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Ahmed N, Abubaker K, Findlay J et al (2010) Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 10:268–278

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Thiery JP, Acloque H, Huang RYJ et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Mamuya FA, Duncan MK (2012) aV integrins and TGF-β-induced EMT: a circle of regulation. J Cell Mol Med 16:445–455

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Moreno-Bueno G, Peinado H, Molina P et al (2009) The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 4:1591–1613

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Shaw TJ, Senterman MK, Dawson K et al (2004) Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 10:1032–1042

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Bénard J, Da Silva J, De Blois MC et al (1985) Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res 45:4970–4979

    PubMed  Google Scholar 

  28. 28.

    Hamilton TC, Young RC, McKoy WM et al (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5389

    CAS  PubMed  Google Scholar 

  29. 29.

    Ward BG, Wallace K, Shepherd JH et al (1987) Intraperitoneal xenografts of human epithelial ovarian cancer in nude mice. Cancer Res 47:2662–2667

    CAS  PubMed  Google Scholar 

  30. 30.

    Staack A, Badendieck S, Schnorr D et al (2006) Combined determination of plasma MMP2, MMP9, and TIMP1 improves the non-invasive detection of transitional cell carcinoma of the bladder. BMC Urol 6:19

    PubMed Central  PubMed  Article  Google Scholar 

  31. 31.

    Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 12:97–104

    PubMed Central  PubMed  Article  Google Scholar 

  32. 32.

    Villedieu M, Briand M, Duval M et al (2007) Anticancer and chemosensitizing effects of 2,3-DCPE in ovarian carcinoma cell lines: link with ERK activation and modulation of p21WAF1/CIP1, Bcl-2 and Bcl-xL expression. Gynecol Oncol 105:373–384

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Ahmed N, Riley C, Oliva K et al (2005) Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer 92:1475–1485

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    Lee S, Yang Y, Fishman D et al (2013) Epithelial-mesenchymal transition enhances nanoscale actin filament dynamics of ovarian cancer cells. J Phys Chem B 117:9233–9240

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Davidson B, Tropé CG, Reich R (2012) Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2:33

    PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Auersperg N, Wong AS, Choi KC et al (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    CAS  PubMed  Google Scholar 

  37. 37.

    Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25:643–655

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Quattrocchi L, Green AR, Martin S et al (2011) The cadherin switch in ovarian high-grade serous carcinoma is associated with disease progression. Virchows Arch 459:21–29

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Sivertsen S, Berner A, Michael CW et al (2006) Cadherin expression in ovarian carcinoma and malignant mesothelioma cell effusions. Acta Cytol 50:603–607

    PubMed  Article  Google Scholar 

  40. 40.

    Comamala M, Pinard M, Thériault C et al (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104:989–999

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Ponnusamy MP, Lakshmanan I, Jain M et al (2010) MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29:5741–5754

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Latifi A, Luwor RB, Bilandzic M et al (2012) Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS ONE 7:e46858

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Wintzell M, Hjerpe E, Åvall Lundqvist E, Shoshan M (2012) Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 12:359

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Thibault B, Castells M, Delord JP, Couderc B (2013) Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev. doi:10.1007/s10555-013-9456-2

    PubMed  Google Scholar 

  45. 45.

    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):09–322

    Article  Google Scholar 

  46. 46.

    Carduner L, Picot CR, Leroy-Dudal J et al (2013) Cell cycle arrest or survival signaling through αv integrins and activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res 320(2):329–342

    PubMed  Article  Google Scholar 

  47. 47.

    Pease JC, Brewer M, Tirnauer JS (2012) Spontaneous spheroid budding from monolayers: a potential contribution to ovarian cancer dissemination. Biol Open 1:622–628

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Makhija S, Sabbatini P, Barakat RR (1999) Intraperitoneal chemotherapy strategies in the treatment of epithelial ovarian carcinoma. Curr Opin Obstet Gynecol 11:23–27

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Veatch AL, Carson LF, Ramakrishnan S (1994) Differential expression of the cell–cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58:393–399

    CAS  PubMed  Google Scholar 

  50. 50.

    Rosanò L, Spinella F, Di Castro V et al (2005) Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res 65:11649–11657

    PubMed  Article  Google Scholar 

  51. 51.

    Kellouche S, Fernandes J, Leroy-Dudal J et al (2010) Initial formation of IGROV1 ovarian cancer multicellular aggregates involves vitronectin. Tumour Biol 31:129–139

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Uhm JH, Dooley NP, Kyritsis AP et al (1999) Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 5:1587–1594

    CAS  PubMed  Google Scholar 

  53. 53.

    Xing H, Weng D, Chen G et al (2008) Activation of fibronectin/PI-3 K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261:108–119

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Matte I, Lane D, Laplante C et al (2012) Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res 2:566–580

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Valdembri D, Serini G (2012) Regulation of adhesion site dynamics by integrin traffic. Curr Opin Cell Biol 24:582–591

    CAS  PubMed  Article  Google Scholar 

Download references


This work was supported by the Ligue Contre le Cancer comité du Val d’Oise, France. L. Carduner is a recipient of a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche, and of the Université de Cergy-Pontoise. The authors thank Dr. C. Blanc-Fournier and M. Briand from F. Baclesse comprehensive center for their support in obtaining ascites samples. We thank Dr. L. Poulain, Dr. C. Denoyelle and Pr. P. Gauduchon (BioTICLA unit from F. Baclesse comprehensive center) for their constant support and advice. We thank Dr. S. Sin (Biology Development lab) for providing some of EMT marker antibodies. The manuscript was revised by Biomedes for English language editing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to F. Carreiras.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carduner, L., Leroy-Dudal, J., Picot, C.R. et al. Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins. Clin Exp Metastasis 31, 675–688 (2014).

Download citation


  • Ascites
  • Epithelial-mesenchymal transition
  • Ovarian cancer
  • αv integrins
  • Tumor microenvironment