Skip to main content

Advertisement

Log in

COX2 expression in neuroblastoma increases tumorigenicity but does not affect cell death in response to the COX2 inhibitor celecoxib

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

COX2 is an inducible cyclooxygenase implicated in the metastasis and migration of tumour cells. In neuroblastoma, COX2 expression has been detected in both cell lines and tumours. The treatment of neuroblastoma cells in vitro with celecoxib, a COX2 inhibitor, induces apoptosis. The aim of this study was to investigate the role of COX2 in neuroblastoma tumour biology by creating a cell line in which COX2 could be conditionally expressed. Xenograft studies showed that the conditional expression of COX2 enhanced tumour growth and malignancy. Elevated COX2 expression enhanced the proliferation and migration of neuroblastoma cells in vitro. However, elevated COX2 expression or variation between cell lines did not affect sensitivity to the COX2 inhibitor celecoxib, indicating that celecoxib does not promote cell death through COX2 inhibition. These data show that increased COX2 expression alone can enhance the tumorigenic properties of neuroblastoma cells; however, high levels of COX2 may not be a valid biomarker of sensitivity to non-steroidal anti-inflammatory drugs such as celecoxib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

COX:

Cyclooxygenase

Dox:

Doxycycline

NSAIDs:

Non-steroidal anti-inflammatory drugs

PGE2:

Prostaglandin E2

Tet:

Tetracycline

References

  1. Gasparini G et al (2003) Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol 4(10):605–615

    Article  CAS  PubMed  Google Scholar 

  2. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  3. Singh B et al (2005) COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 26(5):1393–1399

    CAS  PubMed  Google Scholar 

  4. Singh B et al (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26(26):3789–3796

    Article  CAS  PubMed  Google Scholar 

  5. Bos PD et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gupta GP et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770

    Article  CAS  PubMed  Google Scholar 

  7. Ren R et al (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109(7):2847–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Rodriguez C et al (2008) COX2 expression and Erk1/Erk2 activity mediate Cot-induced cell migration. Cell Signal 20(9):1625–1631

    Article  CAS  PubMed  Google Scholar 

  9. Wu G et al (2006) Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc Res 69(2):512–519

    Article  CAS  PubMed  Google Scholar 

  10. Johnsen JI et al (2004) Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64(20):7210–7215

    Article  CAS  PubMed  Google Scholar 

  11. Ara T et al (2009) Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 69(1):329–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rasmuson A et al (2012) Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS One 7(1):e29331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chan TA et al (1998) Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA 95(2):681–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ponthan F et al (2007) Celecoxib prevents neuroblastoma tumor development and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. Clin Cancer Res 13(3):1036–1044

    Article  CAS  PubMed  Google Scholar 

  15. Bell E et al (2013) Cell survival signalling through PPARdelta and arachidonic acid metabolites in neuroblastoma. PLoS One 8(7):e68859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Biedler JL et al (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11 Pt 1):3751–3757

    CAS  PubMed  Google Scholar 

  17. Biedler JL, Spengler BA (1976) Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 191(4223):185–187

    Article  CAS  PubMed  Google Scholar 

  18. Schleiermacher G et al (2003) Combined 24-color karyotyping and comparative genomic hybridization analysis indicates predominant rearrangements of early replicating chromosome regions in neuroblastoma. Cancer Genet Cytogenet 141(1):32–42

    Article  CAS  PubMed  Google Scholar 

  19. Brodeur GM, Sekhon G, Goldstein MN (1977) Chromosomal aberrations in human neuroblastomas. Cancer 40(5):2256–2263

    Article  CAS  PubMed  Google Scholar 

  20. Lovat PE et al (2002) GADD153 and 12-lipoxygenase mediate fenretinide-induced apoptosis of neuroblastoma. Cancer Res 62(18):5158–5167

    CAS  PubMed  Google Scholar 

  21. Demaison C et al (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13(7):803–813

    Article  CAS  PubMed  Google Scholar 

  22. Bell E et al (2006) The role of MYCN in the failure of MYCN amplified neuroblastoma cell lines to G1 arrest after DNA damage. Cell Cycle 5(22):2639–2647

    Article  CAS  PubMed  Google Scholar 

  23. Scudiero DA et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48(17):4827–4833

    CAS  PubMed  Google Scholar 

  24. Team R (2008) Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  25. Pinheiro J, Bates, D, DebRoy, S, Sarkar, D, R Core Team (2008) nlme: linear and non linear mixed effects models. R package version 3, pp 1–89

  26. Pham DH et al (2008) Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3′ AU-rich mRNA destabilizing elements. Biotechniques 45(2):155–162

    Article  CAS  PubMed  Google Scholar 

  27. Sartelet H et al (2012) Description of a new xenograft model of metastatic neuroblastoma using NOD/SCID/Il2rg null (NSG) mice. In vivo 26(1):19–29

    PubMed  Google Scholar 

  28. Zhu J et al (2004) From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64(12):4309–4318

    Article  CAS  PubMed  Google Scholar 

  29. Ding H et al (2008) OSU03012 activates Erk1/2 and Cdks leading to the accumulation of cells in the S-phase and apoptosis. Int J Cancer 123(12):2923–2930

    CAS  PubMed  Google Scholar 

  30. Schonthal AH (2007) Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Brit J Cancer 97(11):1465–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maier TJ et al (2008) Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol 76(7):862–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. E. Bell was funded by SPARKs (Grant Number: 08NCL01), Dr. F. Ponthan was supported by the Swedish Children’s Cancer Foundation and the Neuroblastoma Society, UK. We would also like to thank Pfizer for providing the celecoxib and Simon Bomken and Olaf Heidenreich for the lentiviral vector.

Conflict of interest

There are no conflicts of interest concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. F. Redfern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, E., Ponthan, F., Whitworth, C. et al. COX2 expression in neuroblastoma increases tumorigenicity but does not affect cell death in response to the COX2 inhibitor celecoxib. Clin Exp Metastasis 31, 651–659 (2014). https://doi.org/10.1007/s10585-014-9656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9656-3

Keywords

Navigation