Skip to main content

Advertisement

Log in

Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

For many types of human cancer, the expression of vascular endothelial growth factor-C (VEGF-C) correlates with enhanced tumor-associated lymphatic vessel density, metastasis formation and poor prognosis. In experimental animals, VEGF-C produced by primary tumors can induce lymphangiogenesis within and/or at the periphery of the tumor, and promotes metastasis formation. Tumor-induced lymphangiogenesis is therefore thought to expedite entry of tumor cells into the lymphatic vasculature and their trafficking to regional lymph nodes, thereby fostering metastatic dissemination. Tumour-produced VEGF-C can also drain to the regional lymph nodes and induce lymphangiogenesis there. Whether this activity promotes metastasis formation remains unclear. To address this issue we manipulated VEGF-C activity and VEGFR-3 activation in the lymph nodes draining syngeneic rat breast cancers using intra-dermal delivery of either recombinant VEGF-C or VEGFR-3 blocking antibodies to induce or suppress lymph node lymphangiogenesis, respectively. Recombinant VEGF-C induced lymph node lymphangiogenesis, but was not sufficient to promote metastasis formation by poorly metastatic NM-081 breast tumours. Conversely, inhibition of lymph node lymphangiogeneis induced by highly metastatic MT-450 breast tumours suppressed the outgrowth of lymph node metastases, but not the initial colonization of the lymph nodes. Lung metastasis was also not affected. We conclude that tumor-derived VEGF-C draining to regional lymph nodes promotes the outgrowth of lymph node metastases. VEGF-C may induce lung metastasis independently of its effects on lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sporn MB (1996) The war on cancer. Lancet 347(9012):1377–1381

    Article  CAS  PubMed  Google Scholar 

  2. Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46(7):1177–1180

    Article  CAS  PubMed  Google Scholar 

  3. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19(5):285–297

    Article  CAS  PubMed  Google Scholar 

  4. Sleeman J, Thiele W (2009) Tumor metastasis and the lymphatic vasculature. Int J Cancer 125(12):2747–2756

    Article  CAS  PubMed  Google Scholar 

  5. Beahrs O, Myers M (1983) Purposes and principles of staging. Manual for staging of cancer. J. B. Lippincott Co, Philadelphia, pp 3–5

    Google Scholar 

  6. Leong SP, Cady B, Jablons DM et al (2006) Clinical patterns of metastasis. Cancer Metastasis Rev 25(2):221–232

    Article  PubMed  Google Scholar 

  7. Tanis PJ, Nieweg OE, Valdes Olmos RA et al (2001) Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy. J Am Coll Surg 192(3):399–409

    Article  CAS  PubMed  Google Scholar 

  8. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  CAS  PubMed  Google Scholar 

  9. Hamada K, Oike Y, Takakura N et al (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96(12):3793–3800

    CAS  PubMed  Google Scholar 

  10. Joukov V, Kumar V, Sorsa T et al (1998) A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem 273(12):6599–6602

    Article  CAS  PubMed  Google Scholar 

  11. Kirkin V, Mazitschek R, Krishnan J et al (2001) Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur J Biochem 268(21):5530–5540

    Article  CAS  PubMed  Google Scholar 

  12. Mandriota SJ, Jussila L, Jeltsch M et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682

    Article  CAS  PubMed  Google Scholar 

  13. Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198

    Article  CAS  PubMed  Google Scholar 

  14. Stacker SA, Caesar C, Baldwin ME et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Kozaki K, Karpanen T et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94(11):819–825

    Article  CAS  PubMed  Google Scholar 

  16. Krishnan J, Kirkin V, Steffen A et al (2003) Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63(3):713–722

    CAS  PubMed  Google Scholar 

  17. He Y, Rajantie I, Pajusola K et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65(11):4739–4746

    Article  CAS  PubMed  Google Scholar 

  18. Kopfstein L, Veikkola T, Djonov VG et al (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170(4):1348–1361

    Article  CAS  PubMed  Google Scholar 

  19. Burton JB, Priceman SJ, Sung JL et al (2008) Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68(19):7828–7837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hirakawa S (2009) From tumor lymphangiogenesis to lymphvascular niche. Cancer Sci 100(6):983–989

    Article  CAS  PubMed  Google Scholar 

  21. Zhao YC, Ni XJ, Wang MH et al (2012) Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med Oncol 29(4):2594–2600

    Article  CAS  PubMed  Google Scholar 

  22. Karnezis T, Shayan R, Caesar C et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21(2):181–195

    Article  CAS  PubMed  Google Scholar 

  23. Hirakawa S, Brown LF, Kodama S et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017

    Article  CAS  PubMed  Google Scholar 

  24. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170(2):774–786

    Article  PubMed  Google Scholar 

  25. Ruddell A, Kelly-Spratt KS, Furuya M et al (2008) p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 27(22):3145–3155

    Article  CAS  PubMed  Google Scholar 

  26. Dadras SS, Lange-Asschenfeldt B, Velasco P et al (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18(9):1232–1242

    Article  PubMed  Google Scholar 

  27. Van den Eynden GG, Van der Auwera I, Van Laere SJ et al (2006) Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br J Cancer 95(10):1362–1366

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wiig H, Aukland K, Tenstad O (2003) Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am J Physiol Heart Circ Physiol 284(1):H416–H424

    CAS  PubMed  Google Scholar 

  29. Joukov V, Sorsa T, Kumar V et al (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16(13):3898–3911

    Article  CAS  PubMed  Google Scholar 

  30. Persaud K, Tille JC, Liu M et al (2004) Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 117(Pt 13):2745–2756

    Article  CAS  PubMed  Google Scholar 

  31. Harvey AJ, Kaestner SA, Sutter DE et al (2011) Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res 28(1):107–116

    Article  CAS  PubMed  Google Scholar 

  32. Tilney NL (1971) Patterns of lymphatic drainage in the adult laboratory rat. J Anat 109(Pt 3):369–383

    CAS  PubMed  Google Scholar 

  33. Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  34. Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kurahara H, Takao S, Shinchi H et al (2010) Significance of lymphangiogenesis in primary tumor and draining lymph nodes during lymphatic metastasis of pancreatic head cancer. J Surg Oncol 102(7):809–815

    Article  PubMed  Google Scholar 

  36. Hoshida T, Isaka N, Hagendoorn J et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66(16):8065–8075

    Article  CAS  PubMed  Google Scholar 

  37. Lund AW, Duraes FV, Hirosue S et al (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199

    Article  CAS  PubMed  Google Scholar 

  38. Ishii E, Shimizu A, Kuwahara N et al (2010) Lymphangiogenesis associated with acute cellular rejection in rat liver transplantation. Transpl Proc 42(10):4282–4285

    Article  CAS  Google Scholar 

  39. Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  CAS  PubMed  Google Scholar 

  40. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  CAS  PubMed  Google Scholar 

  41. Beck B, Driessens G, Goossens S et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399–403

    Article  CAS  PubMed  Google Scholar 

  42. Krishnamurthy S, Dong Z, Vodopyanov D et al (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70(23):9969–9978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Roberts N, Kloos B, Cassella M et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66(5):2650–2657

    Article  CAS  PubMed  Google Scholar 

  44. Schoppmann SF, Birner P, Stockl J et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956

    Article  CAS  PubMed  Google Scholar 

  45. Liersch R, Hirakawa S, Berdel WE et al (2012) Induced lymphatic sinus hyperplasia in sentinel lymph nodes by VEGF-C as the earliest premetastatic indicator. Int J Oncol 41(6):2073–2078

    PubMed  Google Scholar 

  46. Jakob C, Aust DE, Liebscher B et al (2011) Lymphangiogenesis in regional lymph nodes is an independent prognostic marker in rectal cancer patients after neoadjuvant treatment. PLoS ONE 6(11):e27402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Thiele W, Krishnan J, Rothley M et al (2012) VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis. Blood 120(9):1899–1907

    Article  CAS  PubMed  Google Scholar 

  48. Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gogineni A, Caunt M, Crow A et al (2013) Inhibition of VEGF-C modulates distal lymphatic remodeling and secondary metastasis. PLoS ONE 8(7):e68755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the expert technical assistance of Gitta Flaig, Diana Plaumann, Annette Gruber, Sabine Müller and Selma Huber. Melanie Rothley provided excellent support with VEGF-C ∆N∆C and VEGF-C ∆N∆C Cys production, and Anna Poletti critically read the manuscript. This work was supported by grants to JPS from the European Union (FP7 Collaborative Project TuMIC, Contract No. HEALTH-F2-2008-201662), and from the Deutsche Forschungsgemeinschaft under the auspices of Schwerpunktprogramm 1190 (Tumor-vessel interface). LQ gratefully acknowledges receipt of a Heidelberg University Dissertation Grant. JPS is the “Franz-Volhard-Stipftungsprofessur für Mikrovaskuläre Biologie und Pathobiologie” funded by the Klinikum Mannheim gGmbH.

Conflict of interest

BP is employed by ImClone Systems, and AH and RP are employed by Becton–Dickinson, whose products were used in this study. JPS has performed contract research for Eli Lilly. LQ, NC and WT and have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Sleeman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quagliata, L., Klusmeier, S., Cremers, N. et al. Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Clin Exp Metastasis 31, 351–365 (2014). https://doi.org/10.1007/s10585-013-9633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9633-2

Keywords

Navigation