Skip to main content

Advertisement

Log in

The current status of tailor-made medicine with molecular biomarkers for patients with clear cell renal cell carcinoma

  • Review Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Appropriate use of multiple reliable molecular biomarkers in the right context will play a role in tailor-made medicine of clear cell renal cell carcinoma (RCC) patients in the future. A total of 11,056 patients from 53 studies were included in this review. The article numbers of the each evidence levels, using the grading system defined by the Oxford Centre for Evidence-based Medicine, in 1b, 2a, 2b, and 3b were 5 (9 %), 18 (34 %), 29 (55 %), and 1 (2 %), respectively. The main goal of using biomarkers is to refine predictions of tumor progression, pharmacotherapy responsiveness, and cancer-specific and/or overall survival. Currently, carbonic anhydrase (CA9) and vascular endothelial growth factor (VEGF) in peripheral blood and p53 in tumor tissues are measured to predict metastasis, while VEGF-related proteins in peripheral blood are used to assess pharmacotherapy responsiveness with sunitinib. Furthermore, interleukin 8, osteopontin, hepatocyte growth factor, and tissue inhibitors of metalloproteinases-1 in peripheral blood enable assessment of responsiveness to pazopanib treatment. Other reliable molecular biomarkers include von Hippel–Lindau gene alteration, hypoxia-inducible factor-1α, CA9, and survivin in tumor tissues and VEGF in peripheral blood for predicting cancer-specific survival. In the future, studies should undergo external validation for developing tailored management of clear cell RCC with molecular biomarkers, since individual institutional studies lack the generalization and consistency required to maintain accuracy among different patient series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adamy A, Chong KT, Chade D, Costaras J, Russo G, Kaag MG et al (2011) Clinical characteristics and outcomes of patients with recurrence 5 years after nephrectomy for localized renal cell carcinoma. J Urol 185(2):433–438. doi:10.1016/j.juro.2010.09.100

    PubMed  Google Scholar 

  2. Sobin LH, Wittekind C, International Union against Cancer (2002) TNM : classification of malignant tumours, 6th edn. Wiley, New York

    Google Scholar 

  3. Levy DA, Slaton JW, Swanson DA, Dinney CP (1998) Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. J Urol 159(4):1163–1167

    CAS  PubMed  Google Scholar 

  4. Ljungberg B, Alamdari FI, Rasmuson T, Roos G (1999) Follow-up guidelines for nonmetastatic renal cell carcinoma based on the occurrence of metastases after radical nephrectomy. BJU Int 84(4):405–411

    CAS  PubMed  Google Scholar 

  5. Lam JS, Leppert JT, Figlin RA, Belldegrun AS (2005) Surveillance following radical or partial nephrectomy for renal cell carcinoma. Curr Urol Rep 6(1):7–18

    PubMed  Google Scholar 

  6. Lau WK, Cheville JC, Blute ML, Weaver AL, Zincke H (2002) Prognostic features of pathologic stage T1 renal cell carcinoma after radical nephrectomy. Urology 59(4):532–537

    PubMed  Google Scholar 

  7. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98(18):1331–1334. doi:10.1093/jnci/djj362

    PubMed  Google Scholar 

  8. Hupertan V, Roupret M, Poisson JF, Chretien Y, Dufour B, Thiounn N et al (2006) Low predictive accuracy of the Kattan postoperative nomogram for renal cell carcinoma recurrence in a population of French patients. Cancer 107(11):2604–2608. doi:10.1002/cncr.22313

    PubMed  Google Scholar 

  9. Galfano A, Novara G, Iafrate M, Cavalleri S, Martignoni G, Gardiman M et al (2008) Mathematical models for prognostic prediction in patients with renal cell carcinoma. Urol Int 80(2):113–123. doi:10.1159/000112599

    PubMed  Google Scholar 

  10. Cindolo L, Patard JJ, Chiodini P, Schips L, Ficarra V, Tostain J et al (2005) Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer 104(7):1362–1371. doi:10.1002/cncr.21331

    PubMed  Google Scholar 

  11. Jorns J, Thiel DD, Lohse CM, Williams A, Arnold ML, Cheville JC et al (2012) Three-dimensional tumour volume and cancer-specific survival for patients undergoing nephrectomy to treat pT1 clear-cell renal cell carcinoma. BJU Int 110(7):956–960. doi:10.1111/j.1464-410X.2012.10937.x

    PubMed  Google Scholar 

  12. Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295(21):2516–2524. doi:10.1001/jama.295.21.2516

    CAS  PubMed  Google Scholar 

  13. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124. doi:10.1056/NEJMoa065044

    CAS  PubMed  Google Scholar 

  14. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27(22):3584–3590. doi:10.1200/JCO.2008.20.1293

    CAS  PubMed  Google Scholar 

  15. Eisen T, Oudard S, Szczylik C, Gravis G, Heinzer H, Middleton R et al (2008) Sorafenib for older patients with renal cell carcinoma: subset analysis from a randomized trial. J Natl Cancer Inst 100(20):1454–1463. doi:10.1093/jnci/djn319

    CAS  PubMed  Google Scholar 

  16. Choueiri TK, Garcia JA, Elson P, Khasawneh M, Usman S, Golshayan AR et al (2007) Clinical factors associated with outcome in patients with metastatic clear-cell renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. Cancer 110(3):543–550. doi:10.1002/cncr.22827

    CAS  PubMed  Google Scholar 

  17. Choueiri TK, Regan MM, Rosenberg JE, Oh WK, Clement J, Amato AM et al (2010) Carbonic anhydrase IX and pathological features as predictors of outcome in patients with metastatic clear-cell renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. BJU Int 106(6):772–778. doi:10.1111/j.1464-410X.2010.09218.x

    CAS  PubMed  Google Scholar 

  18. Sturgeon CM, Hoffman BR, Chan DW, Ch’ng SL, Hammond E, Hayes DF et al (2008) National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem 54(8):e1–e10. doi:10.1373/clinchem.2007.094144

    CAS  PubMed  Google Scholar 

  19. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. doi:10.1371/journal.pmed.1000100

    PubMed Central  PubMed  Google Scholar 

  20. Hammersley, M. (1998). Reading ethnographic research: a critical guide. Longman social research series, 2nd ed. Longman, London/New York

  21. Oxford Centre for Evidence-based Medicine—Levels of Evidence (2009) Centre for Evidenced-Based Medicine. http://www.cebm.net/?o=1025

  22. Leibovich BC, Lohse CM, Crispen PL, Boorjian SA, Thompson RH, Blute ML et al (2010) Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol 183(4):1309–1315. doi:10.1016/j.juro.2009.12.035

    PubMed  Google Scholar 

  23. Koul H, Huh JS, Rove KO, Crompton L, Koul S, Meacham RB et al (2011) Molecular aspects of renal cell carcinoma: a review. Am J Cancer Res 1(2):240–254

    PubMed Central  PubMed  Google Scholar 

  24. Patard JJ, Leray E, Rioux-Leclercq N, Cindolo L, Ficarra V, Zisman A et al (2005) Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 23(12):2763–2771. doi:10.1200/JCO.2005.07.055

    PubMed  Google Scholar 

  25. Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V et al (2007) Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol 25(11):1316–1322. doi:10.1200/JCO.2006.06.1218

    PubMed  Google Scholar 

  26. Yao M, Yoshida M, Kishida T, Nakaigawa N, Baba M, Kobayashi K et al (2002) VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 94(20):1569–1575

    CAS  PubMed  Google Scholar 

  27. Schultz L, Chaux A, Albadine R, Hicks J, Kim JJ, De Marzo AM et al (2011) Immunoexpression status and prognostic value of mTOR and hypoxia-induced pathway members in primary and metastatic clear cell renal cell carcinomas. Am J Surg Pathol 35(10):1549–1556. doi:10.1097/PAS.0b013e31822895e5

    PubMed Central  PubMed  Google Scholar 

  28. Gilbert SM, Whitson JM, Mansukhani M, Buttyan R, Benson MC, Olsson CA et al (2006) Detection of carbonic anhydrase-9 gene expression in peripheral blood cells predicts risk of disease recurrence in patients with renal cortical tumors. Urology 67(5):942–945. doi:10.1016/j.urology.2005.11.034

    PubMed  Google Scholar 

  29. Li G, Feng G, Gentil-Perret A, Genin C, Tostain J (2007) CA9 gene expression in conventional renal cell carcinoma: a potential marker for prediction of early metastasis after nephrectomy. Clin Exp Metastasis 24(3):149–155. doi:10.1007/s10585-007-9064-z

    PubMed  Google Scholar 

  30. Li G, Feng G, Gentil-Perret A, Genin C, Tostain J (2008) Serum carbonic anhydrase 9 level is associated with postoperative recurrence of conventional renal cell cancer. J Urol 180(2):510–513. Discussion 513–514. doi:10.1016/j.juro.2008.04.024

    Google Scholar 

  31. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27(20):3312–3318. doi:10.1200/JCO.2008.19.5511

    CAS  PubMed  Google Scholar 

  32. Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y et al (2005) Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 103(5):931–942. doi:10.1002/cncr.20887

    CAS  PubMed  Google Scholar 

  33. Lee HJ, Kim DI, Kang GH, Kwak C, Ku JH, Moon KC (2009) Phosphorylation of ERK1/2 and prognosis of clear cell renal cell carcinoma. Urology 73(2):394–399. doi:10.1016/j.urology.2008.08.472

    PubMed  Google Scholar 

  34. Sakai I, Miyake H, Takenaka A, Fujisawa M (2009) Expression of potential molecular markers in renal cell carcinoma: impact on clinicopathological outcomes in patients undergoing radical nephrectomy. BJU Int 104(7):942–946. doi:10.1111/j.1464-410X.2009.08591.x

    CAS  PubMed  Google Scholar 

  35. Zigeuner R, Ratschek M, Rehak P, Schips L, Langner C (2004) Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma: a systematic analysis of primary and metastatic tumor tissue. Urology 63(4):651–655. doi:10.1016/j.urology.2003.11.011

    PubMed  Google Scholar 

  36. Shvarts O, Seligson D, Lam J, Shi T, Horvath S, Figlin R et al (2005) p53 is an independent predictor of tumor recurrence and progression after nephrectomy in patients with localized renal cell carcinoma. J Urol 173(3):725–728. doi:10.1097/01.ju.0000152354.08057.2a

    CAS  PubMed  Google Scholar 

  37. Slaby O, Svoboda M, Michalek J, Vyzula R (2009) MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8:102. doi:10.1186/1476-4598-8-102

    PubMed Central  PubMed  Google Scholar 

  38. Parker AS, Kosari F, Lohse CM, Houston Thompson R, Kwon ED, Murphy L et al (2006) High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer 107(1):37–45. doi:10.1002/cncr.21952

    CAS  PubMed  Google Scholar 

  39. Hoffmann NE, Sheinin Y, Lohse CM, Parker AS, Leibovich BC, Jiang Z et al (2008) External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinoma. Cancer 112(7):1471–1479. doi:10.1002/cncr.23296

    PubMed Central  PubMed  Google Scholar 

  40. Miyata Y, Iwata T, Ohba K, Kanda S, Nishikido M, Kanetake H (2006) Expression of matrix metalloproteinase-7 on cancer cells and tissue endothelial cells in renal cell carcinoma: prognostic implications and clinical significance for invasion and metastasis. Clin Cancer Res 12(23):6998–7003. doi:10.1158/1078-0432.CCR-06-1626

    CAS  PubMed  Google Scholar 

  41. Leroy X, Zerimech F, Zini L, Copin MC, Buisine MP, Gosselin B et al (2002) MUC1 expression is correlated with nuclear grade and tumor progression in pT1 renal clear cell carcinoma. Am J Clin Pathol 118(1):47–51. doi:10.1309/1F99-BPDY-7DHH-9G97

    CAS  PubMed  Google Scholar 

  42. Shoji S, Nakano M, Tomonaga T, Kim H, Hanai K, Usui Y et al (2013) Value of metastin receptor immunohistochemistry in predicting metastasis after radical nephrectomy for pT1 clear cell renal cell carcinoma. Clin Exp Metastasis. doi:10.1007/s10585-012-9564-3

    Google Scholar 

  43. Kankuri-Tammilehto MK, Soderstrom KO, Pelliniemi TT, Vahlberg T, Pyrhonen SO, Salminen EK (2010) Prognostic evaluation of COX-2 expression in renal cell carcinoma. Anticancer Res 30(7):3023–3030

    CAS  PubMed  Google Scholar 

  44. Ohba K, Miyata Y, Watanabe S, Hayashi T, Kanetake H, Kanda S et al (2011) Clinical significance and predictive value of prostaglandin E2 receptors (EPR) 1–4 in patients with renal cell carcinoma. Anticancer Res 31(2):597–605

    CAS  PubMed  Google Scholar 

  45. Seligson DB, Pantuck AJ, Liu X, Huang Y, Horvath S, Bui MH et al (2004) Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clin Cancer Res 10(8):2659–2669

    CAS  PubMed  Google Scholar 

  46. Zigeuner R, Droschl N, Tauber V, Rehak P, Langner C (2006) Biologic significance of fascin expression in clear cell renal cell carcinoma: systematic analysis of primary and metastatic tumor tissues using a tissue microarray technique. Urology 68(3):518–522. doi:10.1016/j.urology.2006.03.032

    PubMed  Google Scholar 

  47. Paret C, Schon Z, Szponar A, Kovacs G (2010) Inflammatory protein serum amyloid A1 marks a subset of conventional renal cell carcinomas with fatal outcome. Eur Urol 57(5):859–866. doi:10.1016/j.eururo.2009.08.014

    CAS  PubMed  Google Scholar 

  48. Klatte T, Seligson DB, Leppert JT, Riggs SB, Yu H, Zomorodian N et al (2008) The chemokine receptor CXCR3 is an independent prognostic factor in patients with localized clear cell renal cell carcinoma. J Urol 179(1):61–66. doi:10.1016/j.juro.2007.08.148

    PubMed  Google Scholar 

  49. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS et al (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66(7):3381–3385. doi:10.1158/0008-5472.CAN-05-4303

    CAS  PubMed  Google Scholar 

  50. de Martino M, Hoetzenecker K, Ankersmit HJ, Roth GA, Haitel A, Waldert M et al (2012) Serum 20S proteasome is elevated in patients with renal cell carcinoma and associated with poor prognosis. Br J Cancer 106(5):904–908. doi:10.1038/bjc.2012.20

    PubMed Central  PubMed  Google Scholar 

  51. Choueiri TK, Vaziri SA, Jaeger E, Elson P, Wood L, Bhalla IP et al (2008) von Hippel–Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J Urol 180(3):860–865. Discussion 865–866. doi:10.1016/j.juro.2008.05.015

    Google Scholar 

  52. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A et al (2005) Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 11(10):3714–3721. doi:10.1158/1078-0432.CCR-04-2019

    CAS  PubMed  Google Scholar 

  53. de Martino M, Klatte T, Seligson DB, LaRochelle J, Shuch B, Caliliw R et al (2009) CA9 gene: single nucleotide polymorphism predicts metastatic renal cell carcinoma prognosis. J Urol 182(2):728–734. doi:10.1016/j.juro.2009.03.077

    PubMed  Google Scholar 

  54. Sabatino M, Kim-Schulze S, Panelli MC, Stroncek D, Wang E, Taback B et al (2009) Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol 27(16):2645–2652. doi:10.1200/JCO.2008.19.1106

    CAS  PubMed  Google Scholar 

  55. Deprimo SE, Bello CL, Smeraglia J, Baum CM, Spinella D, Rini BI et al (2007) Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med 5:32. doi:10.1186/1479-5876-5-32

    PubMed Central  PubMed  Google Scholar 

  56. Rini BI, Michaelson MD, Rosenberg JE, Bukowski RM, Sosman JA, Stadler WM et al (2008) Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol 26(22):3743–3748. doi:10.1200/JCO.2007.15.5416

    CAS  PubMed  Google Scholar 

  57. Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AM et al (2012) Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol 13(8):827–837. doi:10.1016/S1470-2045(12)70241-3

    CAS  PubMed  Google Scholar 

  58. Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M et al (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5(6):379–385. doi:10.3816/CGC.2007.n.020

    CAS  PubMed  Google Scholar 

  59. Tsavachidou-Fenner D, Tannir N, Tamboli P, Liu W, Petillo D, Teh B et al (2010) Gene and protein expression markers of response to combined antiangiogenic and epidermal growth factor targeted therapy in renal cell carcinoma. Ann Oncol 21(8):1599–1606. doi:10.1093/annonc/mdp600

    CAS  PubMed  Google Scholar 

  60. Garcia-Donas J, Esteban E, Leandro-Garcia LJ, Castellano DE, del Alba AG, Climent MA et al (2011) Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol 12(12):1143–1150. doi:10.1016/S1470-2045(11)70266-2

    CAS  PubMed  Google Scholar 

  61. Gigante M, Li G, Ferlay C, Perol D, Blanc E, Paul S et al (2012) Prognostic value of serum CA9 in patients with metastatic clear cell renal cell carcinoma under targeted therapy. Anticancer Res 32(12):5447–5451

    CAS  PubMed  Google Scholar 

  62. Patard JJ, Rioux-Leclercq N, Fergelot P (2006) Understanding the importance of smart drugs in renal cell carcinoma. Eur Urol 49(4):633–643. doi:10.1016/j.eururo.2006.01.016

    CAS  PubMed  Google Scholar 

  63. Schraml P, Struckmann K, Hatz F, Sonnet S, Kully C, Gasser T et al (2002) VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 196(2):186–193. doi:10.1002/path.1034

    CAS  PubMed  Google Scholar 

  64. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B (2005) The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11(3):1129–1135

    CAS  PubMed  Google Scholar 

  65. Dorevic G, Matusan-Ilijas K, Babarovic E, Hadzisejdic I, Grahovac M, Grahovac B et al (2009) Hypoxia inducible factor-1alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res 28:40. doi:10.1186/1756-9966-28-40

    PubMed  Google Scholar 

  66. Kroeze SG, Vermaat JS, van Brussel A, van Melick HH, Voest EE, Jonges TG et al (2010) Expression of nuclear FIH independently predicts overall survival of clear cell renal cell carcinoma patients. Eur J Cancer 46(18):3375–3382. doi:10.1016/j.ejca.2010.07.018

    CAS  PubMed  Google Scholar 

  67. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425(6955):307–311. doi:10.1038/nature01874

    CAS  PubMed  Google Scholar 

  68. Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y et al (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9(2):802–811

    CAS  PubMed  Google Scholar 

  69. Sandlund J, Oosterwijk E, Grankvist K, Oosterwijk-Wakka J, Ljungberg B, Rasmuson T (2007) Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int 100(3):556–560. doi:10.1111/j.1464-410X.2007.07006.x

    PubMed  Google Scholar 

  70. Phuoc NB, Ehara H, Gotoh T, Nakano M, Kamei S, Deguchi T et al (2008) Prognostic value of the co-expression of carbonic anhydrase IX and vascular endothelial growth factor in patients with clear cell renal cell carcinoma. Oncol Rep 20(3):525–530

    PubMed  Google Scholar 

  71. Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B (2000) Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 163(1):343–347

    CAS  PubMed  Google Scholar 

  72. Vartanian AA, Stepanova EV, Gutorov SL, Solomko E, Grigorieva IN, Sokolova IN et al (2009) Prognostic significance of periodic acid-Schiff-positive patterns in clear cell renal cell carcinoma. Can J Urol 16(4):4726–4732

    PubMed  Google Scholar 

  73. Kankuri M, Soderstrom KO, Pelliniemi TT, Vahlberg T, Pyrhonen S, Salminen E (2006) The association of immunoreactive p53 and Ki-67 with T-stage, grade, occurrence of metastases and survival in renal cell carcinoma. Anticancer Res 26(5B):3825–3833

    CAS  PubMed  Google Scholar 

  74. Kosari F, Parker AS, Kube DM, Lohse CM, Leibovich BC, Blute ML et al (2005) Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res 11(14):5128–5139. doi:10.1158/1078-0432.CCR-05-0073

    CAS  PubMed  Google Scholar 

  75. Miyata Y, Iwata T, Maruta S, Kanda S, Nishikido M, Koga S et al (2007) Expression of matrix metalloproteinase-10 in renal cell carcinoma and its prognostic role. Eur Urol 52(3):791–797. doi:10.1016/j.eururo.2006.12.028

    PubMed  Google Scholar 

  76. Kawata N, Nagane Y, Hirakata H, Ichinose T, Okada Y, Yamaguchi K et al (2007) Significant relationship of matrix metalloproteinase 9 with nuclear grade and prognostic impact of tissue inhibitor of metalloproteinase 2 for incidental clear cell renal cell carcinoma. Urology 69(6):1049–1053. doi:10.1016/j.urology.2007.02.044

    PubMed  Google Scholar 

  77. Chen Y, Yusenko MV, Kovacs G (2011) Lack of KISS1R expression is associated with rapid progression of conventional renal cell carcinomas. J Pathol 223(1):46–53. doi:10.1002/path.2764

    CAS  PubMed  Google Scholar 

  78. Wu K, Xu L, Zhang L, Lin Z, Hou J (2011) High Jagged1 expression predicts poor outcome in clear cell renal cell carcinoma. Jpn J Clin Oncol 41(3):411–416. doi:10.1093/jjco/hyq205

    PubMed  Google Scholar 

  79. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y et al (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18(3):645–653. doi:10.1158/1078-0432.CCR-11-2186

    PubMed  Google Scholar 

  80. Horak CE, Lee JH, Marshall JC, Shreeve SM, Steeg PS (2008) The role of metastasis suppressor genes in metastatic dormancy. APMIS 116(7–8):586–601. doi:10.1111/j.1600-0463.2008.01213.x

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kaelin WG Jr (2007) The von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res 13(2 Pt 2):680s–684s. doi:10.1158/1078-0432.CCR-06-1865

    CAS  PubMed  Google Scholar 

  82. Brugarolas J (2007) Renal-cell carcinoma–molecular pathways and therapies. N Engl J Med 356(2):185–187. doi:10.1056/NEJMe068263

    CAS  PubMed  Google Scholar 

  83. Smits KM, Schouten LJ, van Dijk BA, Hulsbergen-van de Kaa CA, Wouters KA, Oosterwijk E et al (2008) Genetic and epigenetic alterations in the von Hippel–Lindau gene: the influence on renal cancer prognosis. Clin Cancer Res 14(3):782–787. doi:10.1158/1078-0432.CCR-07-1753

    CAS  PubMed  Google Scholar 

  84. Klatte T, Seligson DB, Riggs SB, Leppert JT, Berkman MK, Kleid MD et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13(24):7388–7393. doi:10.1158/1078-0432.CCR-07-0411

    CAS  PubMed  Google Scholar 

  85. de Paulsen N, Brychzy A, Fournier MC, Klausner RD, Gnarra JR, Pause A et al (2001) Role of transforming growth factor-alpha in von Hippel–Lindau (VHL)(−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 98(4):1387–1392. doi:10.1073/pnas.031587498

    PubMed  Google Scholar 

  86. Castellano D, Virizuela JA, Cruz J, Sepulveda JM, Saenz M, Paz-Ares L (2012) The role of pharmacogenomics in metastatic renal cell carcinoma. Cancer Metastasis Rev 31(Suppl 1):S29–S32. doi:10.1007/s10555-012-9356-x

    PubMed  Google Scholar 

  87. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. doi:10.1101/gad.1212704

    CAS  PubMed  Google Scholar 

  88. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L et al (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109(11):2257–2267. doi:10.1002/cncr.22677

    CAS  PubMed  Google Scholar 

  89. Tostain J, Li G, Gentil-Perret A, Gigante M (2010) Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer 46(18):3141–3148. doi:10.1016/j.ejca.2010.07.020

    CAS  PubMed  Google Scholar 

  90. Stillebroer AB, Mulders PF, Boerman OC, Oyen WJ, Oosterwijk E (2010) Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol 58(1):75–83. doi:10.1016/j.eururo.2010.03.015

    CAS  PubMed  Google Scholar 

  91. Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82(11):1808–1813. doi:10.1054/bjoc.2000.1111

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Svastova E, Zilka N, Zat’ovicova M, Gibadulinova A, Ciampor F, Pastorek J et al (2003) Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Exp Cell Res 290(2):332–345

    CAS  PubMed  Google Scholar 

  93. Sun M, Shariat SF, Cheng C, Ficarra V, Murai M, Oudard S et al (2011) Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. Eur Urol 60(4):644–661. doi:10.1016/j.eururo.2011.06.041

    PubMed  Google Scholar 

  94. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8. doi:10.1056/NEJM199101033240101

    CAS  PubMed  Google Scholar 

  95. Inoue K, Slaton JW, Karashima T, Yoshikawa C, Shuin T, Sweeney P et al (2000) The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin Cancer Res 6(12):4866–4873

    CAS  PubMed  Google Scholar 

  96. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133(4):1710–1715

    CAS  PubMed  Google Scholar 

  97. du Manoir S, Guillaud P, Camus E, Seigneurin D, Brugal G (1991) Ki-67 labeling in postmitotic cells defines different Ki-67 pathways within the 2c compartment. Cytometry 12(5):455–463. doi:10.1002/cyto.990120511

    PubMed  Google Scholar 

  98. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89(16):7491–7495

    CAS  PubMed  Google Scholar 

  99. Lane DP, Benchimol S (1990) p53: oncogene or anti-oncogene? Genes Dev 4(1):1–8

    CAS  PubMed  Google Scholar 

  100. Moch H, Sauter G, Moore D, Mihatsch MJ, Gudat F, Waldman F (1993) p53 and erbB-2 protein overexpression are associated with early invasion and metastasis in bladder cancer. Virchows Arch A Pathol Anat Histopathol 423(5):329–334

    CAS  PubMed  Google Scholar 

  101. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263. doi:10.1038/nrm2868

    CAS  PubMed  Google Scholar 

  102. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10(8):578–585. doi:10.1038/nrg2628

    CAS  PubMed  Google Scholar 

  103. Bartels CL, Tsongalis GJ (2009) MicroRNAs: novel biomarkers for human cancer. Clin Chem 55(4):623–631. doi:10.1373/clinchem.2008.112805

    CAS  PubMed  Google Scholar 

  104. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi:10.1038/nrc1840

    CAS  PubMed  Google Scholar 

  105. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM (2006) MicroRNA expression and function in cancer. Trends Mol Med 12(12):580–587. doi:10.1016/j.molmed.2006.10.006

    CAS  PubMed  Google Scholar 

  106. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in Cancer. Annu Rev Med 60:167–179. doi:10.1146/annurev.med.59.053006.104707

    CAS  PubMed  Google Scholar 

  107. Verhagen AM, Coulson EJ, Vaux DL (2001) Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2(7): REVIEWS3009

    Google Scholar 

  108. Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92(2):212–216. doi:10.1038/sj.bjc.6602340

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4(8):592–603. doi:10.1038/nrc1412

    CAS  PubMed  Google Scholar 

  110. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD (1999) Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res 59(24):6097–6102

    CAS  PubMed  Google Scholar 

  111. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19(2):1262–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Mueller-Pillasch F, Pohl B, Wilda M, Lacher U, Beil M, Wallrapp C et al (1999) Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech Dev 88(1):95–99

    CAS  PubMed  Google Scholar 

  113. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. doi:10.1038/nrc745

    CAS  PubMed  Google Scholar 

  114. Swallow DM, Gendler S, Griffiths B, Kearney A, Povey S, Sheer D et al (1987) The hypervariable gene locus PUM, which codes for the tumour associated epithelial mucins, is located on chromosome 1, within the region 1q21–24. Ann Hum Genet 51(Pt 4):289–294

    CAS  PubMed  Google Scholar 

  115. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M (1999) MUC1 and cancer. Biochim Biophys Acta 1455(2–3):301–313

    CAS  PubMed  Google Scholar 

  116. Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607–634. doi:10.1146/annurev.ph.57.030195.003135

    CAS  PubMed  Google Scholar 

  117. Copin MC, Devisme L, Buisine MP, Marquette CH, Wurtz A, Aubert JP et al (2000) From normal respiratory mucosa to epidermoid carcinoma: expression of human mucin genes. Int J Cancer 86(2):162–168

    CAS  PubMed  Google Scholar 

  118. Cao Y, Karsten U, Zerban H, Bannasch P (2000) Expression of MUC1, Thomsen–Friedenreich-related antigens, and cytokeratin 19 in human renal cell carcinomas and tubular clear cell lesions. Virchows Arch 436(2):119–126

    CAS  PubMed  Google Scholar 

  119. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K et al (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617. doi:10.1038/35079135

    CAS  PubMed  Google Scholar 

  120. Shoji S, Tang XY, Sato H, Usui Y, Uchida T, Terachi T (2010) Metastin has potential as a suitable biomarker and novel effective therapy for cancer metastasis (Review). Oncol Lett 1(5):783–788. doi:10.3892/ol_00000136

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Shoji S, Tang XY, Umemura S, Itoh J, Takekoshi S, Shima M et al (2009) Metastin inhibits migration and invasion of renal cell carcinoma with overexpression of metastin receptor. Eur Urol 55(2):441–449. doi:10.1016/j.eururo.2008.02.048

    CAS  PubMed  Google Scholar 

  122. Taketo MM (1998) Cyclooxygenase-2 inhibitors in tumorigenesis (Part II). J Natl Cancer Inst 90(21):1609–1620

    CAS  PubMed  Google Scholar 

  123. Eling TE, Thompson DC, Foureman GL, Curtis JF, Hughes MF (1990) Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol 30:1–45. doi:10.1146/annurev.pa.30.040190.000245

    CAS  PubMed  Google Scholar 

  124. Mungan MU, Gurel D, Canda AE, Tuna B, Yorukoglu K, Kirkali Z (2006) Expression of COX-2 in normal and pyelonephritic kidney, renal intraepithelial neoplasia, and renal cell carcinoma. Eur Urol 50(1):92–97. Discussion 97. doi:10.1016/j.eururo.2005.12.039

    Google Scholar 

  125. Yoshimura R, Matsuyama M, Kawahito Y, Tsuchida K, Kuratsukuri K, Takemoto Y et al (2004) Study of cyclooxygenase-2 in renal cell carcinoma. Int J Mol Med 13(2):229–233

    CAS  PubMed  Google Scholar 

  126. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60(5):1306–1311

    CAS  PubMed  Google Scholar 

  127. Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83(3):493–501

    CAS  PubMed  Google Scholar 

  128. Ceccarelli C, Piazzi G, Paterini P, Pantaleo MA, Taffurelli M, Santini D et al (2005) Concurrent EGFr and Cox-2 expression in colorectal cancer: proliferation impact and tumour spreading. Ann Oncol 16(Suppl 4):iv74–iv79. doi:10.1093/annonc/mdi912

    PubMed  Google Scholar 

  129. Hansen-Petrik MB, McEntee MF, Jull B, Shi H, Zemel MB, Whelan J (2002) Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(Min/+) mice. Cancer Res 62(2):403–408

    CAS  PubMed  Google Scholar 

  130. Zweifel BS, Davis TW, Ornberg RL, Masferrer JL (2002) Direct evidence for a role of cyclooxygenase 2-derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res 62(22):6706–6711

    CAS  PubMed  Google Scholar 

  131. Negishi M, Sugimoto Y, Ichikawa A (1995) Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta 1259(1):109–119

    PubMed  Google Scholar 

  132. Asano T, Shoda J, Ueda T, Kawamoto T, Todoroki T, Shimonishi M et al (2002) Expressions of cyclooxygenase-2 and prostaglandin E-receptors in carcinoma of the gallbladder: crucial role of arachidonate metabolism in tumor growth and progression. Clin Cancer Res 8(4):1157–1167

    CAS  PubMed  Google Scholar 

  133. Calabrese G, Crescenzi C, Morizio E, Palka G, Guerra E, Alberti S (2001) Assignment of TACSTD1 (alias TROP1, M4S1) to human chromosome 2p21 and refinement of mapping of TACSTD2 (alias TROP2, M1S1) to human chromosome 1p32 by in situ hybridization. Cytogenet Cell Genet 92(1–2):164–165. doi:56891

    CAS  PubMed  Google Scholar 

  134. Momburg F, Moldenhauer G, Hammerling GJ, Moller P (1987) Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 47(11):2883–2891

    CAS  PubMed  Google Scholar 

  135. Zorzos J, Zizi A, Bakiras A, Pectasidis D, Skarlos DV, Zorzos H et al (1995) Expression of a cell surface antigen recognized by the monoclonal antibody AUA1 in bladder carcinoma: an immunohistochemical study. Eur Urol 28(3):251–254

    CAS  PubMed  Google Scholar 

  136. Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl) 77(10):699–712

    CAS  Google Scholar 

  137. Nagafuchi A, Takeichi M (1988) Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7(12):3679–3684

    CAS  PubMed  Google Scholar 

  138. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W (1991) E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51(23 Pt 1):6328–6337

    CAS  PubMed  Google Scholar 

  139. Behrens J, Mareel MM, Van Roy FM, Birchmeier W (1989) Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. J Cell Biol 108(6):2435–2447

    CAS  PubMed  Google Scholar 

  140. Levenberg S, Yarden A, Kam Z, Geiger B (1999) p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 18(4):869–876. doi:10.1038/sj.onc.1202396

    CAS  PubMed  Google Scholar 

  141. Adams JC (2004) Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol 16(5):590–596. doi:10.1016/j.ceb.2004.07.009

    CAS  PubMed  Google Scholar 

  142. Yoder BJ, Tso E, Skacel M, Pettay J, Tarr S, Budd T et al (2005) The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clin Cancer Res 11(1):186–192

    CAS  PubMed  Google Scholar 

  143. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K et al (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63(24):8614–8622

    CAS  PubMed  Google Scholar 

  144. Urieli-Shoval S, Linke RP, Matzner Y (2000) Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 7(1):64–69

    CAS  PubMed  Google Scholar 

  145. Uhlar CM, Whitehead AS (1999) Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 265(2):501–523

    CAS  PubMed  Google Scholar 

  146. Loetscher M, Loetscher P, Brass N, Meese E, Moser B (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28(11):3696–3705. doi:10.1002/(SICI)1521-4141(199811)28:11<3696:AID-IMMU3696>3.0.CO;2-W

    CAS  PubMed  Google Scholar 

  147. Pan J, Burdick MD, Belperio JA, Xue YY, Gerard C, Sharma S et al (2006) CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176(3):1456–1464

    CAS  PubMed  Google Scholar 

  148. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. doi:10.1038/nm730

    CAS  PubMed  Google Scholar 

  149. Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M et al (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101(29):10691–10696. doi:10.1073/pnas.0307252101

    CAS  PubMed  Google Scholar 

  150. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10(15):5094–5100. doi:10.1158/1078-0432.CCR-04-0428

    CAS  PubMed  Google Scholar 

  151. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    CAS  PubMed  Google Scholar 

  152. Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9

    CAS  PubMed  Google Scholar 

  153. Drucker BJ (2005) Renal cell carcinoma: current status and future prospects. Cancer Treat Rev 31(7):536–545. doi:10.1016/j.ctrv.2005.07.009

    PubMed  Google Scholar 

  154. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ (2011) Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int 108(10):1556–1563. doi:10.1111/j.1464-410X.2011.10629.x

    CAS  PubMed  Google Scholar 

  155. Haddad H, Rini BI (2012) Current treatment considerations in metastatic renal cell carcinoma. Curr Treat Options Oncol 13(2):212–229. doi:10.1007/s11864-012-0182-8

    PubMed  Google Scholar 

  156. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17(8):2530–2540

    CAS  PubMed  Google Scholar 

  157. Dienstmann R, Brana I, Rodon J, Tabernero J (2011) Toxicity as a biomarker of efficacy of molecular targeted therapies: focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist 16(12):1729–1740. doi:10.1634/theoncologist.2011-0163

    CAS  PubMed  Google Scholar 

  158. Kirkali Z (2011) Adverse events from targeted therapies in advanced renal cell carcinoma: the impact on long-term use. BJU Int 107(11):1722–1732. doi:10.1111/j.1464-410X.2010.09985.x

    PubMed  Google Scholar 

  159. Benedict A, Figlin RA, Sandstrom P, Harmenberg U, Ullen A, Charbonneau C et al (2011) Economic evaluation of new targeted therapies for the first-line treatment of patients with metastatic renal cell carcinoma. BJU Int 108(5):665–672. doi:10.1111/j.1464-410X.2010.09957.x

    PubMed  Google Scholar 

  160. Steffens S, Schrader AJ, Vetter G, Eggers H, Blasig H, Becker J et al (2012) Fibronectin 1 protein expression in clear cell renal cell carcinoma. Oncol Lett 3(4):787–790. doi:10.3892/ol.2012.566

    PubMed Central  PubMed  Google Scholar 

  161. de la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A (1999) Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13(2):266–274

    PubMed  Google Scholar 

  162. Yokomizo A, Yamamoto K, Furuno K, Shiota M, Tatsugami K, Kuroiwa K et al (2010) Histopathologic subtype-specific genomic profiles of renal cell carcinomas identified by high-resolution whole-genome single nucleotide polymorphism array analysis. Oncol Lett 1(6):1073–1078. doi:10.3892/ol.2010.187

    PubMed Central  PubMed  Google Scholar 

  163. van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP et al (2011) Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res 17(3):620–629. doi:10.1158/1078-0432.CCR-10-1828

    PubMed  Google Scholar 

  164. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741. doi:10.1158/1078-0432.CCR-07-4843

    CAS  PubMed  Google Scholar 

  165. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267(2):226–244. doi:10.1016/j.canlet.2008.04.050

    CAS  PubMed  Google Scholar 

  166. Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8(3):212–226. doi:10.1038/nrc2345

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925. doi:10.1038/nrm1261

    CAS  PubMed  Google Scholar 

  168. Liu X, Newton RC, Scherle PA (2011) Development of c-MET pathway inhibitors. Expert Opin Investig Drugs 20(9):1225–1241. doi:10.1517/13543784.2011.600687

    CAS  PubMed  Google Scholar 

  169. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89(17):1260–1270

    CAS  PubMed  Google Scholar 

  170. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    CAS  PubMed  Google Scholar 

  171. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96(8):4240–4245

    CAS  PubMed  Google Scholar 

  172. Moore JD, Kirk JA, Hunt T (2003) Unmasking the S-phase-promoting potential of cyclin B1. Science 300(5621):987–990. doi:10.1126/science.1081418

    CAS  PubMed  Google Scholar 

  173. Patard JJ, Fergelot P, Karakiewicz PI, Klatte T, Trinh QD, Rioux-Leclercq N et al (2008) Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer 123(2):395–400. doi:10.1002/ijc.23496

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Baldewijns MM, van Vlodrop IJ, Smits KM, Vermeulen PB, Van den Eynden GG, Schot F et al (2009) Different angiogenic potential in low and high grade sporadic clear cell renal cell carcinoma is not related to alterations in the von Hippel–Lindau gene. Cell Oncol 31(5):371–382. doi:10.3233/CLO-2009-0482

    CAS  PubMed  Google Scholar 

  175. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3):1101–1109

    CAS  PubMed  Google Scholar 

  176. Sharma N, Seftor RE, Seftor EA, Gruman LM, Heidger PM Jr, Cohen MB et al (2002) Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 50(3):189–201

    PubMed  Google Scholar 

  177. Shirakawa K, Wakasugi H, Heike Y, Watanabe I, Yamada S, Saito K et al (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99(6):821–828. doi:10.1002/ijc.10423

    CAS  PubMed  Google Scholar 

  178. Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE et al (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158(4):1279–1288. doi:10.1016/s0002-9440(10)64079-5

    CAS  PubMed  Google Scholar 

  179. Folberg R, Rummelt V, Parys-Van Ginderdeuren R, Hwang T, Woolson RF, Pe’er J et al (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100(9):1389–1398

    CAS  PubMed  Google Scholar 

  180. Toi M, Atiqur Rahman M, Bando H, Chow LW (2005) Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. Lancet Oncol 6(3):158–166. doi:10.1016/s1470-2045(05)01766-3

    CAS  PubMed  Google Scholar 

  181. Padrik P, Saar H (2010) Thymidine phosphorylase as a prognostic factor in renal cell carcinoma. Int Urol Nephrol 42(2):295–298. doi:10.1007/s11255-009-9603-4

    CAS  PubMed  Google Scholar 

  182. Liao B, Hu Y, Herrick DJ, Brewer G (2005) The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem 280(18):18517–18524. doi:10.1074/jbc.M500270200

    CAS  PubMed  Google Scholar 

  183. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    CAS  PubMed  Google Scholar 

  184. Mathew R, Khanna R, Kumar R, Mathur M, Shukla NK, Ralhan R (2002) Stromelysin-2 overexpression in human esophageal squamous cell carcinoma: potential clinical implications. Cancer Detect Prev 26(3):222–228

    CAS  PubMed  Google Scholar 

  185. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A et al (2005) Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 92(12):2171–2180. doi:10.1038/sj.bjc.6602630

    CAS  PubMed Central  PubMed  Google Scholar 

  186. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM (1992) Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52(3):701–708

    CAS  PubMed  Google Scholar 

  187. Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gossler A (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121(8):2407–2418

    CAS  PubMed  Google Scholar 

  188. Maillard I, Pear WS (2003) Notch and cancer: best to avoid the ups and downs. Cancer Cell 3(3):203–205

    CAS  PubMed  Google Scholar 

  189. Sjolund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S et al (2008) Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 118(1):217–228. doi:10.1172/JCI32086

    PubMed Central  PubMed  Google Scholar 

  190. Bleeker SE, Moll HA, Steyerberg EW, Donders AR, Derksen-Lubsen G, Grobbee DE et al (2003) External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 56(9):826–832

    CAS  PubMed  Google Scholar 

  191. Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T et al (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci USA 102(21):7677–7682. doi:10.1073/pnas.0502178102

    CAS  PubMed  Google Scholar 

  192. Karam JA, Lotan Y, Karakiewicz PI, Ashfaq R, Sagalowsky AI, Roehrborn CG et al (2007) Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 8(2):128–136. doi:10.1016/S1470-2045(07)70002-5

    CAS  PubMed  Google Scholar 

  193. Bensalah K, Montorsi F, Shariat SF (2007) Challenges of cancer biomarker profiling. Eur Urol 52(6):1601–1609. doi:10.1016/j.eururo.2007.09.036

    PubMed  Google Scholar 

  194. Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H et al (2004) Using protein expressions to predict survival in clear cell renal carcinoma. Clin Cancer Res 10(16):5464–5471. doi:10.1158/1078-0432.CCR-04-0488

    CAS  PubMed  Google Scholar 

  195. Klatte T, Seligson DB, LaRochelle J, Shuch B, Said JW, Riggs SB et al (2009) Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol Biomarkers Prev 18(3):894–900. doi:10.1158/1055-9965.EPI-08-0786

    CAS  PubMed  Google Scholar 

  196. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113. doi:10.1038/nature09460

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322(5906):1377–1380. doi:10.1126/science.1164266

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi:10.1038/nature09807

    CAS  PubMed  Google Scholar 

  199. Nagy JA, Dvorak HF (2012) Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis 29(7):657–662. doi:10.1007/s10585-012-9500-6

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. doi:10.1056/NEJMoa1113205

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunao Shoji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoji, S., Nakano, M., Sato, H. et al. The current status of tailor-made medicine with molecular biomarkers for patients with clear cell renal cell carcinoma. Clin Exp Metastasis 31, 111–134 (2014). https://doi.org/10.1007/s10585-013-9612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9612-7

Keywords

Navigation