Skip to main content

Advertisement

Log in

Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer related deaths in breast cancer patients are due to metastasis of the disease. Murine 4T1 cells (Murine mammary cancer cell line developed from 6-thioguanine resistant tumor) provide an excellent research tool for metastasis related studies because these cells are highly aggressive and readily metastasize to the lungs. In this study we determined the effect of Deguelin on in vivo/vitro growth and metastasis of 4T1 cells. Deguelin inhibited the in vitro growth of 4T1 cells in a time and dose dependent manner accompanied with reduced nuclear PCNA immunostaining. In cells treated with Deguelin, reduced expression of nuclear c-Met, and its downstream targets such p-ERK and p-AKT was observed. Deguelin reduced the cell migration in 4T1 cells as determined by scratch wound assay. Combined treatment with Deguelin + ERK or PI3K/AKT inhibitor had no additional effect on cell migration. These results indicated that the action of Deguelin on cell migration may be mediated by AKT and ERK mediated signaling pathways. In vivo, Deguelin treatment significantly inhibited growth of 4T1 cells. Deguelin also reduced the occurrence of metastatic lung lesions by 33 % when cells were injected intravenously into Balb/c female mice. There was no difference in the body weight, nor was there a difference in liver and spleen weights between vehicle treated-control and Deguelin-treated animals, which indicated that Deguelin was nontoxic at the dose used in the present study. These results provide rationale for developing Deguelin as a chemotherapeutic agent for triple negative breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4T1:

Mouse mammary tumor cell line 4T1

MDA-MB-231:

Human breast cancer cell line MDA-MB-231

ER:

Estrogen receptor

PR:

Progesterone receptor

HER-2:

Human epidermal growth factor receptor-2

PCNA:

Proliferating cell nuclear antigen

c-Met:

MET or MNNG HOS transforming gene

HGF:

Hepatocyte growth factor

ERK:

Extracellular-signal-regulated kinases

p-ERK:

Phosphorylated ERK

AKT:

Mouse strain Ak-thymoma (t)

p-AKT:

Phosphorylated AKT

COX-2:

Cyclooxyhenase-2

ERB-B2:

Avian erythroblastosis oncogene B

TNBC:

Triple negative breast cancer

XIAP:

X-linked inhibitor of apoptosis protein

hsp90:

Heat shock protein 90

RT:

Reverse transcriptase

PBS:

Phosphate buffered saline

DAPI:

4′,6-diamidino-2-phenylindole

PI:

Propidium iodide

BSA:

Bovine serum albumin

DAB:

Diaminobenzedene

AIN 76A:

American Institute of Nutrition 76A

PI3K:

Phosphatidylinositol 3-kinases

DMSO:

Dimethylsulfoxide

FAK:

Focal adhesion kinase-1

HIF1α:

Hypoxia inducing factor 1alpha

i.p.:

Intraperitoneally

i.v.:

Intravenous

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Ras:

Rat sarcoma

MAPK:

Mitogen activated protein kinase

PKC:

Protein kinase C

IKB:

Inhibitor of kappa B

IKK:

I kappa B

LEF1:

Lymphoid enhancer-binding factor-1

TCF:

T Cell Factor

Wnt:

Combination of integration 1 (int) and drosophila wingless (wg)

c-MYC:

Myelocytomatosis oncogene

VEGF:

Vascular endothelial growth factor

MMP-7:

Matrix metalloproteinase 7

uPA:

Urokinase-type plasminogen activator

References

  1. Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, Brufsky AM, Lembersky BC, Ahrendt GM (2010) Immunohistochemical surrogate markers of breast cancer molecular classes predict response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 116:1431–1439

    Article  PubMed  CAS  Google Scholar 

  2. Bauer KR, Brown M, Cress RD (2007) Descriptive analysis of estrogen receptor negative, progesterone receptor negative and HER2 negative invasive breast cancer the so called triple negative phenotype: a population based study from California cancer registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  3. Ma KK, Chau WW, Wong CH, Wong K, Fung N, Lee AJ, Choi CL, Suen DT, Kwong A (2012) Triple negative status is a poor prognostic indicator in Chinese women with breast cancer: a ten tear review. Asian Pac J Cancer Prev 13:2109–2114

    Google Scholar 

  4. Gerhauser C, Woonghon M, Suh N, Yingde L, Kosmeder J, Moriarty RM, Luyengi L, Kinghorn DA, Fong HH, Mehta RG, Constantinou A, Moon RC, Pezzuto JM (1995) Rotenoids mediate potent cancer chemopreventive activity through transcriptional regulation of ornithine decarboxylase. Nat Med 1:260–266

    Article  PubMed  CAS  Google Scholar 

  5. Mehta RG, Pezzuto JM (2002) Discovery of cancer preventive agents from natural products: from plants to prevention. Curr Oncol Rep 4:478–486

    Article  PubMed  Google Scholar 

  6. Chun KH, Kosmeder JW 2nd, Sun S, Pezzuto JM, Lotan R, Hong WK, Lee HY (2003) Effects of Deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 95:291–302

    Article  PubMed  CAS  Google Scholar 

  7. Lee HY, Suh YA, Kosmeder JW, Pezzuto JM, Hong WK, Kurie JM (2004) Deguelin-induced inhibition of cyclooxygenase-2 expression in human bronchial epithelial cells. Clin Cancer Res 10:1074–1079

    Article  PubMed  CAS  Google Scholar 

  8. Yan Y, Wang Y, Tan Q, Lubet RA, You M (2005) Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia 7:1053–1057

    Article  PubMed  CAS  Google Scholar 

  9. Peng XH, Karna P, O’Regan RM, Liu X, Naithani R, Moriarty RM, Wood WC, Lee HY, Yang L (2006) Down-regulation of inhibitor of apoptosis proteins by Deguelin selectively induces apoptosis in breast cancer cells. Mol Pharmacol 71:101–111

    Article  PubMed  Google Scholar 

  10. Chu ZH, Liang XH, Zhou XL, Huang RF, Zhan Q, Jiang JW (2011) Effects of Deguelin on proliferation and apoptosis of MCF-7 breast cancer cells by phosphatidylinositol 3-kinase/Akt signaling pathway. Zhong Xi Yi Jie He Xue Bao 9:533–538

    Article  PubMed  CAS  Google Scholar 

  11. Yi T, Li H, Wang X, Wu Z (2008) Enhancement radiosensitization of breast cancer cells by Deguelin. Cancer Biother Radiopharm 23:355–362

    Article  PubMed  CAS  Google Scholar 

  12. Murillo G, Peng X, Torres KE, Mehta RG (2009) Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway. Cancer Prev Res (Phila) 11:942–950

    Article  Google Scholar 

  13. Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 β/β-catenin pathway. Int J Cancer 129:2916–2927

    Article  PubMed  CAS  Google Scholar 

  14. Hu J, Ye H, Fu A, Chen X, Wang Y, Chen X, Ye X, Xiao W, Duan X, Wei Y, Chen L (2010) Deguelin—an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model. Int J Cancer 127:2455–2466

    Article  PubMed  CAS  Google Scholar 

  15. Memmott RM, Dennis PA (2009) The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin Cancer Res 16:4–10

    Article  PubMed  Google Scholar 

  16. Lee JH, Lee DH, Lee HS, Choi JS, Kim KW, Hong SS (2008) Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncol Rep 20:129–134

    PubMed  CAS  Google Scholar 

  17. Oh SH, Woo JK, Yazici YD, Myers JN, Kim WY, Jin Q, Hong SS, Park HJ, Sun YG, Kim KW, Hong WK, Lee HY (2007) Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J Natl Cancer Inst 99:949–961

    Article  PubMed  CAS  Google Scholar 

  18. Suh YA, Kim JH, Sung MA, Boo HJ, Yun HJ, Lee SH, Lee HJ, Min HY, Lee HY (2013) A novel antitumor activity of deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer. Cancer Lett. doi:10.1016/j.canlet.2013.01.022. Epub ahead of print

  19. Dell’Eva R, Ambrosini C, Minghelli S, Noonan DM, Albini A, Ferrari N (2007) The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis 28:404–413

    Article  PubMed  Google Scholar 

  20. Chen WH, Chen Y, Cui GH (2006) Deguelin inhibits expression of IkappaBalpha protein in Raji and U937 cells. Acta Pharmacol Sin 27:485–490

    Article  PubMed  Google Scholar 

  21. Boreddy SR, Srivastava SK (2012) Deguelin suppresses pancreatic tumor growth and metastasis by inhibiting epithleial-to-mesenchymal transition in an orthotopic model. Oncogene. doi:10.1038/onc.2012.413. Epub ahead of print

  22. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, Moriarty RM, Pezzuto JM (1997) Cancer chemopreventive activity mediated by Deguelin, a naturally occurring rotenoid. Cancer Res 57:3424–3428

    PubMed  CAS  Google Scholar 

  23. Anzeveno PB (1979) Rotenoid interconversion. Synthesis of deguelin from rotenone. J Org Chem 44:2578–2580

    Article  CAS  Google Scholar 

  24. Mehta RR, Graves JM (1998) A Shilkaitis and TK Das Gupta Development of a new metastatic human breast carcinoma xenograft line. Br J Cancer 77(4):595–604

    Article  PubMed  CAS  Google Scholar 

  25. Bonine-Summers AR, Aakre ME, Brown KA, Arteaga CL, Pietenpol JA, Moses HL, Cheng N (2007) Epidermal growth factor receptor plays a significant role in hepatocyte growth factor mediated biological responses in mammary epithelial cells. Cancer Biol Ther 6:561–570

    Article  PubMed  CAS  Google Scholar 

  26. Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17:1540–1548

    Article  PubMed  CAS  Google Scholar 

  27. Shojaei F, Simmons BH, Lee JH, Lappin PB (2012) Christensen JG HGF/c-Met pathway is one of the mediators of sunitinib-induced tumor cell type-dependent metastasis. Cancer Lett 320(1):48–55

    Article  PubMed  CAS  Google Scholar 

  28. Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 10:202–211

    Article  PubMed  CAS  Google Scholar 

  29. Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki S, Quesnelle KM, Morgan S, Ferris RL, Grandis JR, Siegfried JM (2009) HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res 15:3740–3750

    Article  PubMed  CAS  Google Scholar 

  30. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, Salanti G, Richter T, Knudsen B, Vande Woude GF, Harbeck NC (2005) Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of HER2/neu. Int J Cancer 113:678–682

    Article  PubMed  CAS  Google Scholar 

  31. Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, Francis GL (2000) Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol 53:635–644

    Article  CAS  Google Scholar 

  32. Tsao MS, Liu N, Chen JR, Pappas J, Ho J, To C, Viallet J, Park M, Zhu H (1998) Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer 20:1–16

    Article  PubMed  CAS  Google Scholar 

  33. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57:5391–5398

    PubMed  CAS  Google Scholar 

  34. Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG, Comoglio PM, Di Renzo MF (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74:1862–1868

    Article  PubMed  CAS  Google Scholar 

  35. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148:225–232

    PubMed  CAS  Google Scholar 

  36. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR (1995) Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55:1129–1138

    PubMed  Google Scholar 

  37. Furukawa T, Duguid WP, Kobari M, Matsuno S, Tsao MS (1995) Hepatocyte growth factor and Met receptor expression in human pancreatic carcinogenesis. Am J Pathol 147:889–895

    PubMed  CAS  Google Scholar 

  38. Liu C, Park M, Tsao MS (1992) Overexpression of c-met proto-oncogene but not epidermal growth factor receptor or c-erbB-2 in primary human colorectal carcinomas. Oncogene 7:181–185

    PubMed  CAS  Google Scholar 

  39. Houldsworth J, Cordon-Cardo C, Ladanyi M, Kelsen DP, Chaganti RS (1990) Gene amplification in gastric and esophageal adenocarcinomas. Cancer Res 50:6417–6422

    PubMed  CAS  Google Scholar 

  40. Awasthi V, King RJ (2000) PKC, p42/p44 MAPK, and p38 MAPK are required for HGF-induced proliferation of H441 cells. Am J Physiol Lung Cell Mol Physiol 279:L942–L949

    PubMed  CAS  Google Scholar 

  41. Kermorgant S, Aparicio T, Dessirier V, Lewin MJ, Lehy T (2001) Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. Carcinogenesis 22:1035–1042

    Article  PubMed  CAS  Google Scholar 

  42. Mabjeesh NJ, Amir S (2007) Hypoxia-inducible factor in human tumorigenesis. Histol Histopathol 22:559–572

    PubMed  CAS  Google Scholar 

  43. Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19:139–145

    Article  PubMed  CAS  Google Scholar 

  44. Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283

    Article  PubMed  CAS  Google Scholar 

  45. Liu W, Shen SM, Zhao XY, Chen GQ (2012) Targeted gene and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3(2):165. Epub 2012 May 31

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Cancer Institute USPHS Grant CA140321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra G. Mehta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R.R., Katta, H., Kalra, A. et al. Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells. Clin Exp Metastasis 30, 855–866 (2013). https://doi.org/10.1007/s10585-013-9585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9585-6

Keywords

Navigation