Skip to main content

Advertisement

Log in

Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells?

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

T cell based immunotherapy has been investigated in a variety of malignancies and analyses have been mostly founded on in vitro data with tumor cell monolayers. However, three-dimensional (3D) culture models might mimic more closely the ‘in vivo’ conditions than 2D monolayers. Therefore, we analyzed the expression of tumor-associated antigens (TAA) and of molecules involved in antigen processing and presentation (APM) in tumor spheres, which served as an in vitro model for micrometastasis which might be enriched in tumor propagating cancer stem cells. For enrichment of sphere cells 12 human solid tumor cell lines were cultured in serum-free medium. Expression of a variety of TAA and APM were analyzed by RT-PCR and/or flow cytometry and compared to expression in corresponding adherent bulk cells grown in regular growth medium. Compared to adherent cells, spheres showed equal or higher mRNA expression levels of LMP2, LMP7 and MECL-1, of TAP1 and TAP2 transporters and, surprisingly, also of TAA including differentiation antigens. However, downregulation or loss of HLA-I and HLA-II molecules in spheres was observed in 8 of 10 and 1 of 2 cell lines, respectively, and was unresponsive to stimulation with IFN-γ. Although tumor spheres express TAA and molecules of intracellular antigen processing, they are defective in antigen presentation due to downregulation of HLA surface expression which may lead to immune evasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocyte

TAA:

Tumor-associated antigens

APM:

Molecules involved in antigen processing and presentation

SFM:

Serum-free growth medium

GM:

Serum containing growth medium

HLA:

Human leukocyte antigen

IMP:

Influenza matrix protein

WT1:

Wilm′s tumor suppressor gene 1

PAX2:

Paired box gene 2

CEA:

Carcinoembryonic Antigen

CK20:

Cytokeratin 20

HMBS:

Hydroxymethylbilane synthase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

TAP1/2:

Transporters 1/2

LMP2/7:

Large multifunctional peptidase 2/7

MECL-1:

Multicatalytic endopeptidase complex 1

References

  1. Chaudhuri D, Suriano R, Mittelman A, Tiwari RK (2009) Targeting the immune system in cancer. Curr Pharm Biotechnol 10(2):166–184

    Article  PubMed  CAS  Google Scholar 

  2. van der Bruggen P, Van den Eynde BJ (2006) Processing and presentation of tumor antigens and vaccination strategies. Curr Opin Immunol 18(1):98–104

    Article  PubMed  Google Scholar 

  3. Asemissen AM, Brossart P (2009) Vaccination strategies in patients with renal cell carcinoma. Cancer Immunol Immunother 58(7):1169–1174

    Article  PubMed  Google Scholar 

  4. Grange JM, Krone B, Stanford JL (2009) Immunotherapy for malignant melanoma—tracing Ariadne’s thread through the labyrinth. Eur J Cancer 45(13):2266–2273

    Article  PubMed  CAS  Google Scholar 

  5. Jandus C, Speiser D, Romero P (2009) Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 22(6):711–723

    Article  PubMed  CAS  Google Scholar 

  6. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    Article  PubMed  CAS  Google Scholar 

  7. Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC (2008) New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol Med 14(8):333–340

    Article  PubMed  CAS  Google Scholar 

  8. Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120(1):41–50

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  10. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    Article  PubMed  CAS  Google Scholar 

  11. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  12. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  13. Welte Y, Adjaye J, Lehrach HR, Regenbrecht CR (2010) Cancer stem cells in solid tumors: elusive or illusive? Cell Commun Signal 8(1):6

    Article  PubMed  Google Scholar 

  14. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  PubMed  CAS  Google Scholar 

  15. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: aACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  16. Seliger B (2005) Strategies of tumor immune evasion. BioDrugs 19(6):347–354

    Article  PubMed  CAS  Google Scholar 

  17. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14

    Article  PubMed  CAS  Google Scholar 

  18. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  PubMed  CAS  Google Scholar 

  19. Desoize B, Jardillier J (2000) Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol 36(2–3):193–207

    Article  PubMed  CAS  Google Scholar 

  20. Nederman T (1984) Effects of vinblastine and 5-fluorouracil on human glioma and thyroid cancer cell monolayers and spheroids. Cancer Res 44(1):254–258

    PubMed  CAS  Google Scholar 

  21. Santini MT, Rainaldi G, Indovina PL (2000) Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit Rev Oncol Hematol 36(2–3):75–87

    Article  PubMed  CAS  Google Scholar 

  22. Ghosh S, Rosenthal R, Zajac P, Weber WP, Oertli D, Heberer M, Martin I, Spagnoli GC, Reschner A (2005) Culture of melanoma cells in 3-dimensional architectures results in impaired immunorecognition by cytotoxic T lymphocytes specific for Melan-A/MART-1 tumor-associated antigen. Ann Surg 242(6):851–857 discussion 858

    Article  PubMed  Google Scholar 

  23. Dangles-Marie V, Richon S, El-Behi M, Echchakir H, Dorothee G, Thiery J, Validire P, Vergnon I, Menez J, Ladjimi M, Chouaib S, Bellet D, Mami-Chouaib F (2003) A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation. Cancer Res 63(13):3682–3687

    PubMed  CAS  Google Scholar 

  24. Dangles V, Validire P, Wertheimer M, Richon S, Bovin C, Zeliszewski D, Vallancien G, Bellet D (2002) Impact of human bladder cancer cell architecture on autologous T-lymphocyte activation. Int J Cancer 98(1):51–56

    Article  PubMed  CAS  Google Scholar 

  25. Feder-Mengus C, Ghosh S, Weber WP, Wyler S, Zajac P, Terracciano L, Oertli D, Heberer M, Martin I, Spagnoli GC, Reschner A (2007) Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer 96(7):1072–1082

    Article  PubMed  CAS  Google Scholar 

  26. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    Article  PubMed  CAS  Google Scholar 

  27. Schatton T, Frank MH (2009) Antitumor immunity and cancer stem cells. Ann N Y Acad Sci 1176:154–169

    Article  PubMed  CAS  Google Scholar 

  28. Gedye C, Quirk J, Browning J, Svobodova S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J, Davis ID (2009) Cancer/testis antigens can be immunological targets in clonogenic CD133 + melanoma cells. Cancer Immunol Immunother 58(10):1635–1646

    Article  PubMed  CAS  Google Scholar 

  29. Sigalotti L, Covre A, Zabierowski S, Himes B, Colizzi F, Natali PG, Herlyn M, Maio M (2008) Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. J Cell Physiol 215(2):287–291

    Article  PubMed  CAS  Google Scholar 

  30. Brown CE, Starr R, Martinez C, Aguilar B, D’Apuzzo M, Todorov I, Shih CC, Badie B, Hudecek M, Riddell SR, Jensen MC (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8 + cytolytic T cells. Cancer Res 69(23):8886–8893

    Article  PubMed  CAS  Google Scholar 

  31. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F, Bruzzone MG, Finocchiaro G (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252

    Article  PubMed  CAS  Google Scholar 

  32. Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J, Konda B, Black KL, Yu JS (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27(8):1734–1740

    Article  PubMed  CAS  Google Scholar 

  33. Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, Moretta L, Moretta A, Corte G, Bottino C (2009) NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 182(6):3530–3539

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403

    Article  PubMed  CAS  Google Scholar 

  35. Busse A, Kraus M, Na IK, Rietz A, Scheibenbogen C, Driessen C, Blau IW, Thiel E, Keilholz U (2008) Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112(3):659–670

    Article  PubMed  CAS  Google Scholar 

  36. Gorlach A, Acker H (1994) pO2- and pH-gradients in multicellular spheroids and their relationship to cellular metabolism and radiation sensitivity of malignant human tumor cells. Biochim Biophys Acta 1227(3):105–112

    Article  PubMed  CAS  Google Scholar 

  37. Chignola R, Schenetti A, Andrighetto G, Chiesa E, Foroni R, Sartoris S, Tridente G, Liberati D (2000) Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours. Cell Prolif 33(4):219–229

    Article  PubMed  CAS  Google Scholar 

  38. Muratovska A, Zhou C, He S, Goodyer P, Eccles MR (2003) Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22(39):7989–7997

    Article  PubMed  Google Scholar 

  39. Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M, Kudoh T, Akiyama T, Murakami A, Maekawa T (1996) Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 87(7):2878–2884

    PubMed  CAS  Google Scholar 

  40. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ (1996) A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 12(5):1005–1014

    PubMed  CAS  Google Scholar 

  41. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55

    Article  PubMed  CAS  Google Scholar 

  42. Durda PJ, Dunn IS, Rose LB, Butera D, Benson EM, Pandolfi F, Kurnick JT (2003) Induction of “antigen silencing” in melanomas by oncostatin M: down-modulation of melanocyte antigen expression. Mol Cancer Res 1(6):411–419

    PubMed  CAS  Google Scholar 

  43. Menssen HD, Bertelmann E, Bartelt S, Schmidt RA, Pecher G, Schramm K, Thiel E (2000) Wilms’ tumor gene (WT1) expression in lung cancer, colon cancer and glioblastoma cell lines compared to freshly isolated tumor specimens. J Cancer Res Clin Oncol 126(4):226–232

    Article  PubMed  CAS  Google Scholar 

  44. Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM, Galli R, Parmiani G, Maccalli C (2010) Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16(3):800–813. doi:10.1158/1078-0432.CCR-09-2730

    Article  PubMed  CAS  Google Scholar 

  45. Guillaume B, Chapiro J, Stroobant V, Colau D, Van Holle B, Parvizi G, Bousquet-Dubouch MP, Theate I, Parmentier N, Van den Eynde BJ (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604

    Article  PubMed  CAS  Google Scholar 

  46. Wright KL, White LC, Kelly A, Beck S, Trowsdale J, Ting JP (1995) Coordinate regulation of the human TAP1 and LMP2 genes from a shared bidirectional promoter. J Exp Med 181(4):1459–1471

    Article  PubMed  CAS  Google Scholar 

  47. Blair A, Hogge DE, Sutherland HJ (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR. Blood 92(11):4325–4335

    PubMed  CAS  Google Scholar 

  48. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  49. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11(5):321–334

    Article  PubMed  Google Scholar 

  50. Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869–5885

    Article  PubMed  CAS  Google Scholar 

  51. Liu Y, Zhao JJ, Wang CM, Li MY, Han P, Wang L, Cheng YQ, Zoulim F, Ma X, Xu DP (2009) Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J 122(1):10–14

    PubMed  CAS  Google Scholar 

  52. Castelli EC, Moreau P, Oya e Chiromatzo A, Mendes-Junior CT, Veiga-Castelli LC, Yaghi L, Giuliatti S, Carosella ED, Donadi EA (2009) In silico analysis of microRNAS targeting the HLA-G 3′ untranslated region alleles and haplotypes. Hum Immunol 70(12):1020–1025

    Article  PubMed  CAS  Google Scholar 

  53. Stone JD, Aggen DH, Schietinger A, Schreiber H, Kranz DM (2012) A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell engagers (BiTEs). Oncoimmunology 1(6):863–873

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a grant of the Berliner Krebsgesellschaft, Hiege-Stiftung for Melanoma Research, EU Integrated Project Cancer Immunology and Immunotherapy. CRAR received funding from Wilhelm Sander-Stiftung.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Busse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busse, A., Letsch, A., Fusi, A. et al. Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells?. Clin Exp Metastasis 30, 781–791 (2013). https://doi.org/10.1007/s10585-013-9578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9578-5

Keywords

Navigation