Skip to main content

Advertisement

Log in

Subcutaneous passage increases cell aggressiveness in a xenograft model of diffuse large B cell lymphoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Xenograft models of human diffuse large B cell lymphoma (DLBCL) are widely used to test new drugs against this neoplasia. Most of them, however, are subcutaneous xenografts that do not show a disseminated disease as it is found in the human neoplasia. In this paper, we aimed to develop a disseminated xenograft model of DLBCL by performing a subcutaneous passage of DLBCL cells before their intravenous injection in mice. WSU-DLCL-2 (WSU) cells were injected into both flanks of NOD/SCID mice. The subcutaneous tumours were disaggregated and a cell suspension (WSU-SC) was obtained. Two groups of 10 NOD/SCID mice were intravenously injected with WSU-SC or WSU cells. All mice injected with WSU-SC cells developed lymphoma in 32–47 days and showed lymph node and bone marrow infiltration. WSU-SC cells showed a significantly higher engraftment rate and faster dissemination than WSU cells after intravenous injection in mice. When molecularly compared, WSU-SC cells showed higher expression levels of FAK, p130Cas and phosphorylated AKT than WSU cells. The subcutaneous passage enhanced the engraftment and the metastatic capacity of WSU cells, allowing the generation of a rapid and disseminated DLBCL xenograft model. The aggressive behaviour of WSU-SC cells was associated with increased p130Cas and FAK expression and AKT activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DLBCL:

Diffuse large B cell lymphoma

CHOP:

Cyclophosphamide, doxorubicin, vincristine and prednisone

GEM:

Genetically engineered mice

WSU-SC:

WSU cell line after subcutaneous passage

References

  1. Coiffier B (2005) State-of-the-art therapeutics: diffuse large B-cell lymphoma. J Clin Oncol 23:6387–6393

    Article  PubMed  CAS  Google Scholar 

  2. Matasar MJ, Zelenetz AD (2008) Overview of lymphoma diagnosis and management. Radiol Clin North Am 46:175–198

    Article  PubMed  Google Scholar 

  3. O’Connor OA, Toner LE, Vrhovac R et al (2005) Comparative animal models for the study of lymphohematopoietic tumors: strengths and limitations of present approaches. Leuk Lymphoma 46:973–992

    Article  PubMed  Google Scholar 

  4. Ghetie MA, Richardson J, Tucker T et al (1990) Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int J Cancer 45:481–485

    Article  PubMed  CAS  Google Scholar 

  5. Ochakovskaya R, Osorio L, Goldenberg DM, Mattes MJ (2001) Therapy of disseminated B-cell lymphoma xenografts in severe combined immunodeficient mice with an anti-CD74 antibody conjugated with (111)indium, (67)gallium, or (90)yttrium. Clin Cancer Res 7:1505–1510

    PubMed  CAS  Google Scholar 

  6. Griffiths GL, Mattes MJ, Stein R et al (2003) Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res 9:6567–6571

    PubMed  CAS  Google Scholar 

  7. DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249

    Article  PubMed  CAS  Google Scholar 

  8. Zhao XF, Hassan A, Perry A et al (2008) C-MYC rearrangements are frequent in aggressive mature B-cell lymphoma with atypical morphology. Int J Clin Exp Pathol 1:65–74

    PubMed  CAS  Google Scholar 

  9. Maximova OA, Taffs RE, Pomeroy KL, Piccardo P, Asher DM (2006) Computerized morphometric analysis of pathological prion protein deposition in scrapie-infected hamster brain. J Histochem Cytochem 54:97–107

    Article  PubMed  CAS  Google Scholar 

  10. Casanova I, Bosch R, Lasa A et al (2008) A celecoxib derivative inhibits focal adhesion signaling and induces caspase-8-dependent apoptosis in human acute myeloid leukemia cells. Int J Cancer 123:217–226

    Article  PubMed  CAS  Google Scholar 

  11. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  12. Andreassen K, Mortensen B, Winberg JO, Huseby NE (2002) Increased resistance towards oxidative stress accompanies enhancement of metastatic potential obtained by repeated in vivo passage of colon carcinoma cells in syngeneic rats. Clin Exp Metastasis 19:623–629

    Article  PubMed  CAS  Google Scholar 

  13. Yasoshima T, Denno R, Kawaguchi S et al (1996) Establishment and characterization of human gastric carcinoma lines with high metastatic potential in the liver: changes in integrin expression associated with the ability to metastasize in the liver of nude mice. Jpn J Cancer Res 87:153–160

    Article  PubMed  CAS  Google Scholar 

  14. Bresalier RS, Hujanen ES, Raper SE et al (1987) An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47:1398–1406

    PubMed  CAS  Google Scholar 

  15. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279:33024–33034

    Article  PubMed  CAS  Google Scholar 

  16. Yan JS, Chen XY, Li WP, Yang Y, Song ZL (2009) Establishing SCID mouse models of B-cell non-Hodgkin’s lymphoma. Ai Zheng 28:181–183

    PubMed  Google Scholar 

  17. Cattoretti G, Pasqualucci L, Ballon G et al (2005) Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7:445–455

    Article  PubMed  CAS  Google Scholar 

  18. Hoyer KK, French SW, Turner DE et al (2002) Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc Natl Acad Sci USA 99:14392–14397

    Article  PubMed  CAS  Google Scholar 

  19. Ranger AM, Zha J, Harada H et al (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100:9324–9329

    Article  PubMed  Google Scholar 

  20. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  Google Scholar 

  21. Gatter K, Pezzella F (2009) Diffuse large B-cell lymphoma. Diagn histopathol 16:69–75

    Article  Google Scholar 

  22. Aubert C (1995) Metastatic variants of the B16 melanoma: metastasis is related to environmental conditions. Phenotypic changes in vitro and metastatic colonization potential in nude mice. Melanoma Res 5:139–146

    Article  PubMed  CAS  Google Scholar 

  23. Seftor EA, Meltzer PS, Kirschmann DA et al (2006) The epigenetic reprogramming of poorly aggressive melanoma cells by a metastatic microenvironment. J Cell Mol Med 10:174–196

    Article  PubMed  CAS  Google Scholar 

  24. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed  CAS  Google Scholar 

  25. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar S, Svoboda M, de Beaumont R, Freedman AS (2002) The role of Aktand RAFTK in beta1 integrin mediated survival of precursor B-acute lymphoblastic leukemia cells. Leuk Lymphoma 43:1663–1671

    Article  PubMed  CAS  Google Scholar 

  27. Uddin S, Hussain AR, Siraj AK et al (2006) Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108:4178–4186

    Article  PubMed  CAS  Google Scholar 

  28. Baohua Y, Xiaoyan Z, Tiecheng Z, Tao Q, Daren S (2008) Mutations of the PIK3CA gene in diffuse large B cell lymphoma. Diagn Mol Pathol 17:159–165

    Article  PubMed  Google Scholar 

  29. Bosch R, Dieguez-Gonzalez R, Céspedes MV et al (2011) A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood 118:4411–4420

    Article  PubMed  CAS  Google Scholar 

  30. Kim M, Gans JD, Nogueira C et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125:1269–1281

    Article  PubMed  CAS  Google Scholar 

  31. Miyazaki T, Kato H, Nakajima M et al (2003) FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer 89:140–145

    Article  PubMed  CAS  Google Scholar 

  32. Sood AK, Coffin JE, Schneider GB et al (2004) Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165:1087–1095

    Article  PubMed  CAS  Google Scholar 

  33. Earley S, Plopper GE (2008) Phosphorylation of focal adhesion kinase promotes extravasation of breast cancer cells. Biochem Biophys Res Commun 366:476–482

    Article  PubMed  CAS  Google Scholar 

  34. Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106:10290–10295

    Article  PubMed  CAS  Google Scholar 

  35. Fromont G, Vallancien G, Validire P, Levillain P, Cussenot O (2007) BCAR1 expression in prostate cancer: association with 16q23 LOH status, tumor progression and EGFR/KAI1 staining. Prostate 67:268–273

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Cristo Cámara, Mariona Madero and Mónica Gómez for their technical support. We would also like to thank Carolyn Newey for English text revision and editing. This work was supported by Instituto de Salud Carlos III [FIS PS09/00965 to R. M., FIS PI080672 to J. S., FI08/00007 to R. B., Sara Borrell CD09/00014 to R. D.]; MiCINN [PIB2010BZ-00563 to R. M.]; CIBER-BBN [CBV6/01/1031 to R. M.]; and Fundació d’Investigació Sant Pau.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isolda Casanova or Ramon Mangues.

Additional information

Isolda Casanova and Ramon Mangues contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, R., Moreno, M.J., Dieguez-Gonzalez, R. et al. Subcutaneous passage increases cell aggressiveness in a xenograft model of diffuse large B cell lymphoma. Clin Exp Metastasis 29, 339–347 (2012). https://doi.org/10.1007/s10585-012-9454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9454-8

Keywords

Navigation