Skip to main content

Advertisement

Log in

Phosphorylated pVEGFR2/KDR receptor expression in uveal melanomas: relation with HIF2α and survival

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Hypoxia and its down-stream activated pathways are commonly involved in tumor progression. Genes involved in angiogenesis and glycolysis, i.e. vascular endothelial growth factor (VEGF) and lactase dehydrogenase A (LDHA), respectively, are transcriptionally controlled by the hypoxia inducible factors 1α and 2α (HIF1α and HIF2α). A series of 60 uveal melanomas were immunohistochemically assessed for the expression of VEGF and the phosphorylated/activated form of VEGF receptor 2 (pVEGFR2/KDR), after binding to VEGF. The expression of HIF1α, HIF2α and LDH5 was also investigated. Uveal melanomas overexpressing HIF2α (but not that of HIF1α) were significantly associated with high VEGF (P = 0.005), pVEGFR2/KDR (P < 0.0001) and LDH5 (P ≤ 0.0001). High LDH5 was linked with tumor necrosis (P = 0.01) and increased tumor size (P = 0.03). High VEGF was linked with phosphorylated pVEGFR2/KDR receptors. In univariate analysis high pVEGFR2/KDR receptor expression was significantly related with poor prognosis (P = 0.02). It is concluded that HIF2α plays an important role in the progression of uveal melanomas possibly by promoting the autocrine loop VEGF-pVEGFR2/KDR, and by enhancing the expression of LDHA gene, conferring thus a growth advantage. As pVEGFR2/KDR expression was significantly related with poor prognosis, inhibitors of this receptor may improve the clinical outcome of patients with pVEGFR2/KDR overexpressing uveal melanomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lutz JM, Cree IA, Foss AJ (1999) Risk factors for intraocular melanoma and occupational exposure. Br J Ophthalmol 83:1190–1193

    Article  PubMed  CAS  Google Scholar 

  2. Gragoudas E, Li W et al (2002) Evidence-based estimates of outcome in patients irradiated for intraocular melanoma. Arch Ophthalmol 120(12):1665–1671

    PubMed  Google Scholar 

  3. Bechrakis NE, Schmid E et al (2010) Proton beam irradiation of uveal melanomas of the posterior pole. Spektrum Augenheilkd 24:11–16

    Article  Google Scholar 

  4. Bechrakis NE, Petousis V, Willerding G et al (2010) Ten-year results of transscleral resection of large uveal melanomas: local tumour control and metastatic rate. Br J Ophthalmol. 94:460–466

    Article  PubMed  Google Scholar 

  5. Yang AS, Chapman PB (2009) The history and future of chemotherapy for melanoma. Hematol Oncol Clin North Am 23:583–597

    Article  PubMed  Google Scholar 

  6. Ascierto PA, Kirkwood JM (2008) Adjuvant therapy of melanoma with interferon: lessons of the past decade. J Transl Med 6:62

    Article  PubMed  Google Scholar 

  7. Michaylira CZ, Nakagawa H (2006) Hypoxic microenvironment as a cradle for melanoma development and progression. Cancer Biol Ther 5:476–479

    Article  PubMed  CAS  Google Scholar 

  8. Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma - survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174

    Article  PubMed  CAS  Google Scholar 

  9. Giatromanolaki A, Sivridis E, Kouskoukis C et al (2003) Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res 13:493–501

    Article  PubMed  CAS  Google Scholar 

  10. Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4013–4604

    Google Scholar 

  11. Blancher C, Moore JW, Talks KL et al (2000) Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 60:7106–7113

    PubMed  CAS  Google Scholar 

  12. Semenza GL, Jiang BH, Leung SW et al (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537

    Article  PubMed  CAS  Google Scholar 

  13. Stewart M, Turley H, Cook N et al (2003) The angiogenic receptor KDR is widely distributed in human tissues and tumours and relocates intracellularly on phosphorylation. An immunohistochemical study. Histopathology 43:33–39

    Article  PubMed  CAS  Google Scholar 

  14. Edge SD, Byrd DR, Carducci MA, Compton CC (eds) (2010) AJCC cancer staging manual, 7th edn. Springer, New York

    Google Scholar 

  15. Talks KL, Turley H, Gatter KC et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    Article  PubMed  CAS  Google Scholar 

  16. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2006) Tumour Angiogenesis Research Group. Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the Tumour Angiogenesis Research Group. J Clin Oncol 24:4301–4308

    Article  PubMed  CAS  Google Scholar 

  17. Turley H, Scott PA, Watts VM et al (2005) Expression of VEGF in routinely fixed material using a new monoclonal antibody VG1. J Pathol 186:313–318

    Article  Google Scholar 

  18. Liu J, Qu R, Ogura M et al (2005) Real-time imaging of hypoxia-inducible factor-1 activity in tumor xenografts. J Radiat Res 46:93–102

    Article  PubMed  CAS  Google Scholar 

  19. Victor N, Ivy A, Jiang BH et al (2006) Involvement of HIF-1 in invasion of Mum2B uveal melanoma cells. Clin Exp Metastasis 23:87–96

    Article  PubMed  CAS  Google Scholar 

  20. Liu Y, Tao J, Li Y, Yang J et al (2009) Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol Ther 17:269–277

    Article  PubMed  CAS  Google Scholar 

  21. el Filali M, Missotten GS, Maat W et al (2010) Regulation of VEGF-A in uveal melanoma. Invest Ophthalmol Vis Sci 51:2329–2337

    Article  PubMed  Google Scholar 

  22. Valencak J, Kittler H, Schmid K et al (2009) Prognostic relevance of hypoxia inducible factor-1alpha expression in patients with melanoma. Clin Exp Dermatol 34:e962–e964

    Article  PubMed  CAS  Google Scholar 

  23. Young AC, Craven RA, Cohen D et al (2009) Analysis of VHL Gene Alterations and their Relationship to Clinical Parameters in Sporadic Conventional Renal Cell Carcinoma. Clin Cancer Res 15:7582–7592

    Article  PubMed  CAS  Google Scholar 

  24. Steiner H, Berger AP, Godoy-Tundidor S et al (2004) An autocrine loop for vascular endothelial growth factor is established in prostate cancer cells generated after prolonged treatment with interleukin 6. Eur J Cancer 40:1066–1072

    Article  PubMed  CAS  Google Scholar 

  25. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62:7203-7206

  26. Kim SJ, Seo JH, Lee YJ et al (2005) Autocrine vascular endothelial growth factor/vascular endothelial growth factor receptor-2 growth pathway represents a cyclooxygenase-2-independent target for the cyclooxygenase-2 inhibitor NS-398 in colon cancer cells. Oncology 68:204–211

    Article  PubMed  CAS  Google Scholar 

  27. Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107:2037–2042

    Article  PubMed  CAS  Google Scholar 

  28. Boyd SR, Tan DS, de Souza L et al (2006) Uveal melanomas express vascular endothelial growth factor and basic fibroblast growth factor and support endothelial cell growth. 1. Br J Ophthalmol 86:440–447

    Article  Google Scholar 

  29. Missotten GS, Notting IC, Schlingemann RO et al (2006) Vascular endothelial growth factor a in eyes with uveal melanoma. 1. Arch Ophthalmol 124:1428–1434

    Article  PubMed  CAS  Google Scholar 

  30. Barak V, Pe’er J, Kalickman I et al (2011) VEGF as a biomarker for metastatic uveal melanoma in humans. 1. Curr Eye Res 36:386–390

    Article  PubMed  CAS  Google Scholar 

  31. Flanigan J, Deshpande H, Gettinger S (2010) Current status of vandetanib (ZD6474) in the treatment of non-small cell lung cancer. Biologics 4:237–243

    PubMed  CAS  Google Scholar 

  32. Stadler WM, Cao D, Vogelzang NJ et al (2004) A randomized Phase II trial of the antiangiogenic agent SU5416 in hormone-refractory prostate cancer. Clin Cancer Res 10:3365–3370

    Article  PubMed  CAS  Google Scholar 

  33. Banerjee S, A’Hern R, Detre S et al (2010) Biological evidence for dual antiangiogenic-antiaromatase activity of the VEGFR inhibitor PTK787/ZK222584 in vivo. Clin Cancer Res 16:4178–4187

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Giatromanolaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giatromanolaki, A., Sivridis, E., Bechrakis, N.E. et al. Phosphorylated pVEGFR2/KDR receptor expression in uveal melanomas: relation with HIF2α and survival. Clin Exp Metastasis 29, 11–17 (2012). https://doi.org/10.1007/s10585-011-9424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9424-6

Keywords

Navigation