Skip to main content

Advertisement

Log in

CD44 is a biomarker associated with human prostate cancer radiation sensitivity

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

CD44 plays an important role in cancer metastasis, chemotherapy, and radiation resistance. The present study investigated the relationship of CD44 expression and radioresistance, and the potential mechanisms of CD44 in radiosensitivity using prostate cancer (CaP) cell lines. CD44 was knocked down in three CaP cell lines (PC-3, PC-3M-luc, and LNCaP) using small interfering RNA (siRNA) and clonogenic survival fractions after single dose irradiation were compared before and after CD44 knocking down (KD). The effect of radiation on cell cycle distribution was examined by flow cytometry and the cell cycle-related protein levels of phospho-Chk1 and phospho-Chk2 were ascertained by Western blotting. The expression of the DNA double strand break (DSB) marker-γH2AX was also quantified by immunofluorescence staining. Our results indicate that the down-regulation of CD44 enhanced radiosensitivity in PC-3, PC-3M-luc, and LNCaP CaP cells, the sensitizing enhancement ratio for these cell lines was 2.3, 1.3, and 1.5, respectively and that the delay of DNA DSB repair in low CD44-expressing KD CaP cells correlated with ineffective cell cycle arrest and the delayed phosphorylation of Chk1 and Chk2. These findings suggest that CD44 may be a valuable biomarker and a predictor of radiosensitivity in CaP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CaP:

Prostate cancer

CD44s:

Standard CD44

CD44v:

CD44 isoforms or variants

CSC:

Cancer stem cell

DPBS:

Dulbecco’s phosphate-buffered saline

DSB:

DNA double strand break

EBRT:

External beam irradiation therapy

ECL:

Enhanced chemiluminescence

ECM:

Extracellular matrix

FACS:

Fluorescence-activated cell sorting

HA:

Hyaluronan

HNSCC:

Head and neck squamous cell carcinoma

HRP:

Horseradish peroxidase

LQ:

Linear quadratic

KD:

Knocking down

PI:

Propidium iodide

SER:

Sensitivity enhancement ratio

siRNA:

Small interfering RNA

SSD:

Source surface distance

References

  1. Sandler HM, Mirhadi AJ (2009) Radical radiotherapy for prostate cancer is the ‘only way to go’. Oncology (Williston Park) 23:840–843

    Google Scholar 

  2. Goldner G, Dimopoulos J, Kirisits C, Pötter R (2009) Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 185:438–445

    Article  PubMed  Google Scholar 

  3. Kuban DA, Levy LB, Cheung MR, Lee AK, Choi S, Frank S, Pollack A (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79:1310–1317

    Article  PubMed  Google Scholar 

  4. Zapatero A, García-Vicente F, Martín de Vidales C, Cruz Conde A, Ibáñez Y, Fernández I, Rabadán M (2010) Long-term results after high-dose radiotherapy and adjuvant hormones in prostate cancer: how curable is high-risk disease?. Int J Radiat Oncol Biol Phys 2010. doi:10.1016/j.ijrobp.2010.07.1975

  5. Eade TN, Hanlon AL, Horwitz EM, Buyyounouski MK, Hanks GE, Pollack A (2007) What dose of external-beam radiation is high enough for prostate cancer? Int J Radiat Oncol Biol Phys 68:682–689

    Article  PubMed  Google Scholar 

  6. Coen JJ, Bae K, Zietman AL, Patel B, Shipley WU, Slater JD, Rossi CJ (2010) Acute and late toxicity after dose escalation to 82 GyE using conformal proton radiation for localized prostate cancer: initial report of American College of Radiology Phase II Study 03–12. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2010.06.047

  7. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  PubMed  CAS  Google Scholar 

  8. Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV (2008) Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semi Cancer Biol 18:260–267

    Article  CAS  Google Scholar 

  9. Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651

    Article  PubMed  CAS  Google Scholar 

  10. Hao JL, Cozzi PJ, Khatri A, Power CA, Li Y (2010) EMMPRIN/CD147 and CD44 are potential therapeutic targets for metastatic prostate cancer. Curr Cancer Drug Targ 20:287–306

    Article  Google Scholar 

  11. Hao JL, Chen H, Madigan MC, Cozzi PJ, Beretov J, Xiao W, Delprado WJ, Russell PJ, Li Y (2010) Co-expression of CD147 (EMMPRIN), CD44v3–10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 103:1008–1018

    Article  PubMed  CAS  Google Scholar 

  12. de Jong MC, Pramana J, van der Wal JE, Lacko M, Peutz-Kootstra CJ, de Jong JM, Takes RP, Kaanders JH, van der Laan BF, Wachters J, Jansen JC, Rasch CR, van Velthuysen ML, Grénman R, Hoebers FJ, Schuuring E, van den Brekel MW, Begg AC (2010) CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin Cancer Res 16:5329–5338

    Article  PubMed  Google Scholar 

  13. Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA (2004) Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest 84:894–907

    Article  PubMed  CAS  Google Scholar 

  14. Gao AC, Lou W, Sleeman JP, Isaacs JT (1998) Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res 58:2350–2352

    PubMed  CAS  Google Scholar 

  15. Yang K, Tang Y, Habermehl GK, Iczkowski KA (2010) Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity. BMC Cancer 10:16

    Article  PubMed  Google Scholar 

  16. Chen H, Hao J, Wang L, Li Y (2009) Coexpression of invasive markers (uPA, CD44) and multiple drug resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 101:432–440

    Article  PubMed  CAS  Google Scholar 

  17. Fertil B, Dertinger H, Courdi A, Malaise EP (1984) Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res 99:73–84

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X, Yang H, Gu K, Chen J, Rui M, Jiang GL (2011) In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int J Nanomedicine 6:437–444

    Article  PubMed  Google Scholar 

  19. Kim IA, Kim JH, Shin JH, Kim IH, Kim JS, Wu HG, Chie EK, Kim YH, Kim BK, Hong S, Park SW, Ha SW, Park CI (2005) A histone deacetylase inhibitor, trichostatin A, enhances radiosensitivity by abrogating G2/M arrest in human carcinoma cells. Cancer Res Treat 37:122–128

    Article  PubMed  Google Scholar 

  20. Supiot S, Hill RP, Bristow RG (2008) Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol Cancer Ther 7:993–999

    Article  PubMed  CAS  Google Scholar 

  21. Schmidberger H, Rave-Fränk M, Lehmann J, Schweinfurth S, Pradier O, Hess CF (1999) Radiosensitizing effect of natural and recombinant beta-interferons in a human lung carcinoma in vitro. J Cancer Res Clin Oncol 125:350–356

    Article  PubMed  CAS  Google Scholar 

  22. Hofstetter B, Niemierko A, Forrer C, Benhattar J, Albertini V, Pruschy M, Bosman FT, Catapano CV, Ciernik IF (2010) Impact of genomic methylation on radiation sensitivity of colorectal carcinoma. Int J Radiat Oncol Biol Phys 76:1512–1519

    Article  PubMed  CAS  Google Scholar 

  23. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247

    PubMed  CAS  Google Scholar 

  24. Fingert HJ, Chang JD, Pardee AB (1986) Cytotoxic, cell cycle, and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Res 46:2463–2467

    PubMed  CAS  Google Scholar 

  25. Harper LJ, Costea DE, Gammon L, Fazil B, Biddle A, Mackenzie IC (2010) Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer 10:166

    Article  PubMed  Google Scholar 

  26. Sak A, Stuschke M (2010) Use of γH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol 20:223–231

    Article  PubMed  Google Scholar 

  27. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  PubMed  CAS  Google Scholar 

  28. Greaves M (2010) Cancer stem cells: back to Darwin? Semin Cancer Biol 20:65–70

    Article  PubMed  Google Scholar 

  29. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  PubMed  CAS  Google Scholar 

  30. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765

    Article  PubMed  CAS  Google Scholar 

  31. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  32. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  33. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediatesradiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623

    Article  PubMed  CAS  Google Scholar 

  34. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  PubMed  CAS  Google Scholar 

  35. Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12:R13

    Article  PubMed  Google Scholar 

  36. Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  PubMed  Google Scholar 

  37. Maula SM, Luukkaa M, Grénman R, Jackson D, Jalkanen S, Ristamäki R (2003) Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 63:1920–1926

    PubMed  CAS  Google Scholar 

  38. Lin JT, Chang TH, Chang CS, Wang WH, Su BW, Lee KD, Chang PJ (2010) Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral Oncol 46:e29–e33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the technical support from Mr. Ken Hopper, Mr. Ese Enari and Ms. Julia Beretov at the Cancer Care Centre, St George Hospital, Sydney, Australia. This study was supported by a Career Development Fellowship from National Health Medical Research Council (NHMRC) (Yong Li), Australia; St George Hospital Cancer Research Trust Fund (Peter H Graham), Sydney, Australia; and China Scholarship Council (WeiWei Xiao), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Graham, P.H., Power, C.A. et al. CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin Exp Metastasis 29, 1–9 (2012). https://doi.org/10.1007/s10585-011-9423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9423-7

Keywords

Navigation