Bielack SS, Carrle D, Hardes J et al (2008) Bone tumors in adolescents and young adults. Curr Treat Option Oncol 9(1):67–80
Article
Google Scholar
Khanna C (2008) Novel targets with potential therapeutic applications in osteosarcoma. Curr Oncol Rep 10(4):350–358
PubMed
Article
CAS
Google Scholar
Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54
PubMed
Article
CAS
Google Scholar
Ptitsyn AA, Weil MM, Thamm DH (2008) Systems biology approach to identification of biomarkers for metastatic progression in cancer. BMC Bioinform 9(Suppl 9):S8
Article
Google Scholar
Chen Y, Cairns R, Papandreou I et al (2009) Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PloS One 4(9):e7033
PubMed
Article
Google Scholar
Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102(17):5992–5997
PubMed
Article
CAS
Google Scholar
Acebo P, Giner D, Calvo P et al (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2(3):138–145
PubMed
Google Scholar
Amuthan G, Biswas G, Ananadatheerthavarada HK et al (2002) Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21(51):7839–7849
PubMed
Article
CAS
Google Scholar
Amuthan G, Biswas G, Zhang SY et al (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20(8):1910–1920
PubMed
Article
CAS
Google Scholar
Denhardt DT, Greenberg AH, Egan SE et al (1987) Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 2(1):55–59
PubMed
CAS
Google Scholar
Frade R, Rodrigues-Lima F, Huang S et al (1998) Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res 58(13):2733–2736
PubMed
CAS
Google Scholar
Brown J (1962) Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metab Clin Exp 11:1098–1112
PubMed
CAS
Google Scholar
Pelicano H, Martin DS, Xu RH et al (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646
PubMed
Article
CAS
Google Scholar
Geschwind JF, Ko YH, Torbenson MS et al (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62(14):3909–3913
PubMed
CAS
Google Scholar
Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev 9(6):447–464
Article
CAS
Google Scholar
Sottnik JL, Duval DL, Ehrhart EJ et al (2010) An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis. Clin Exp Metastasis 27(3):151–160
PubMed
Article
Google Scholar
Dehn DL, Siegel D, Zafar KS et al (2006) 5-Methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione, a mechanism-based inhibitor of NAD(P)H:quinoneoxidoreductase 1, exhibits activity against human pancreatic cancer in vitro and in vivo. Mol Cancer Ther 5(7):1702–1709
PubMed
Article
CAS
Google Scholar
Janeway KA, Walkley CR (2010) Modeling human osteosarcoma in the mouse: from bedside to bench. Bone 47(5):859–865
PubMed
Article
Google Scholar
Souhami RL, Craft AW, Van der Eijken JW et al (1997) Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet 350(9082):911–917
PubMed
Article
CAS
Google Scholar
Liu H, Hu YP, Savaraj N et al (2001) Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40(18):5542–5547
PubMed
Article
CAS
Google Scholar
Maschek G, Savaraj N, Priebe W et al (2004) 2-Deoxy-d-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64(1):31–34
PubMed
Article
CAS
Google Scholar
Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96(24):1805–1806
PubMed
Article
Google Scholar
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70
PubMed
Article
CAS
Google Scholar
Hua Y, Qiu Y, Zhao A et al (2011) Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. J Proteome Res 10(8):3513–3521
Google Scholar
Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science (New York, NY) 330(6009):1340–1344
Article
CAS
Google Scholar
Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):7435–7442
PubMed
Article
CAS
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 324(5930):1029–1033
Article
Google Scholar
Biswas G, Tang W, Sondheimer N et al (2008) A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling. J Biol Chem 283(18):12586–12594
PubMed
Article
CAS
Google Scholar
Guha M, Srinivasan S, Biswas G et al (2007) Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J Biol Chem 282(19):14536–14546
PubMed
Article
CAS
Google Scholar
Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62(22):6674–6681
PubMed
CAS
Google Scholar
Willers IM, Isidoro A, Ortega AD et al (2010) Selective inhibition of beta-F1-ATPase mRNA translation in human tumours. Biochem J 426(3):319–326
PubMed
Article
CAS
Google Scholar
Simons AL, Fath MA, Mattson DM et al (2007) Enhanced response of human head and neck cancer xenograft tumors to cisplatin combined with 2-deoxy-d-glucose correlates with increased 18F-FDG uptake as determined by PET imaging. Int J Radiat Oncol Biol Phys 69(4):1222–1230
PubMed
Article
Google Scholar
Kurtoglu M, Maher JC, Lampidis TJ (2007) Differential toxic mechanisms of 2-deoxy-d-glucose versus 2-fluorodeoxy-d-glucose in hypoxic and normoxic tumor cells. Antioxid Redox Signal 9(9):1383–1390
PubMed
Article
CAS
Google Scholar
Lampidis TJ, Kurtoglu M, Maher JC et al (2006) Efficacy of 2-halogen substituted d-glucose analogs in blocking glycolysis and killing “hypoxic tumor cells”. Cancer Chemother Pharmacol 58(6):725–734
PubMed
Article
CAS
Google Scholar
Maher JC, Savaraj N, Priebe W et al (2005) Differential sensitivity to 2-deoxy-d-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30(2):e34–e39
PubMed
Article
Google Scholar
Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ et al (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9(9):1084–1101
PubMed
Article
CAS
Google Scholar
Minor RK, Smith DL Jr, Sossong AM et al (2010) Chronic ingestion of 2-deoxy-d-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol 243(3):332–339
PubMed
Article
CAS
Google Scholar
Dwarakanath BS, Singh D, Banerji AK et al (2009) Clinical studies for improving radiotherapy with 2-deoxy-d-glucose: present status and future prospects. J Cancer Res Ther 5(Suppl 1):S21–S26
PubMed
Article
CAS
Google Scholar
Stein M, Lin H, Jeyamohan C et al (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70(13):1388–1394
PubMed
Article
CAS
Google Scholar
Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482
PubMed
Article
CAS
Google Scholar
Boutros J, Almasan A (2009) Combining 2-deoxy-d-glucose with electron transport chain blockers: a double-edged sword. Cancer Biol Ther 8(13):1237–1238
PubMed
Article
CAS
Google Scholar
Fath MA, Diers AR, Aykin-Burns N et al (2009) Mitochondrial electron transport chain blockers enhance 2-deoxy-d-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol Ther 8(13):1228–1236
PubMed
Article
CAS
Google Scholar
Ben Sahra I, Laurent K, Giuliano S et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70(6):2465–2475
PubMed
Article
CAS
Google Scholar
Sahra IB, Tanti JF, Bost F (2010) The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK dependent apoptosis in prostate cancer cells. Autophagy 6(5). doi:10.1158/0008-5472.CAN-09-2782
Zhao Y, Liu H, Liu Z et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597
PubMed
Article
CAS
Google Scholar
Kurtoglu M, Gao N, Shang J et al (2007) Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6(11):3049–3058
PubMed
Article
CAS
Google Scholar
Maher JC, Wangpaichitr M, Savaraj N et al (2007) Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-d-glucose. Mol Cancer Ther 6(2):732–741
PubMed
Article
CAS
Google Scholar
Langbein S, Frederiks WM, Zur Hausen A et al (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122(11):2422–2428
PubMed
Article
CAS
Google Scholar
Krockenberger M, Engel JB, Schmidt M et al (2010) Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res 30(5):1653–1659
PubMed
CAS
Google Scholar
Sun W, Liu Y, Glazer CA et al (2010) TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 16(3):857–866
PubMed
Article
CAS
Google Scholar
Volker HU, Hagemann C, Coy J et al (2008) Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocyticgliomas. Am J Clin Pathol 130(1):50–57
PubMed
Article
Google Scholar
Xu X, Zur Hausen A, Coy JF et al (2009) Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124(6):1330–1337
PubMed
Article
CAS
Google Scholar
Xi H, Kurtoglu M, Liu H et al (2011) 2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67(4):899–910
Google Scholar