Skip to main content
Log in

Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression

Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer metastasis and anti-cancer drug resistance are the major reason for the failure of clinical cancer treatment. We evaluated CD147, monocarboxylate transporters (MCT1 and MCT4), and multidrug resistance (MDR) markers (MDR1 and MRP2) in 4 epithelial ovarian cancer (EOC) cell lines and primary tumors (n = 120) along with the matched metastatic lesions (n = 40) with immunofluorescence labeling. We correlated CD147 with MCT1, MCT4, MDR1 and MRP2 markers in primary and metastatic cells in cell lines and tissues using confocal microscopy. We also investigated the relationship of expression of CD147, MCT1 and MCT4 with various progression parameters. Our results indicate that the co-expression of CD147 with MCTs or MDR markers was found in primary and metastatic EOC cells and stromal cells; the over-expression of CD147, MCT1 and MCT4 was found in most primary and the matched metastatic lesions of EOC, and was significantly associated with tumor stage, grade, residual disease status and presence of ascites (P < 0.05) but not with histology type (P > 0.05). These results suggest that over-expression of CD147, MCT1 and MCT4 is correlated with EOC progression, and co-expression of CD147 and MCT1/MCT4 is related to drug resistance during EOC metastasis and could be useful therapeutic targets to prevent the development of incurable, recurrent and drug resistance EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ABC:

ATP-binding cassette

CT:

Computed tomography

EOC:

Epithelial ovarian cancer

FBS:

Fetal bovine serum

HEG:

High-expression group

LEG:

Low-expression group

MAb:

Monoclonal antibody

MCTs:

Monocarboxylate transporters

MDR:

Multidrug resistance

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PAb:

Polyclonal antibody

Pgp:

P-glycoprotein

RNAi:

RNA interference

siRNA:

Small interfering RNA

shRNA:

Short hairpin RNA

TBS:

Tris buffered saline

References

  1. Baird RD, Kaye SB (2003) Drug resistance reversal—are we getting closer? Eur J Cancer 39:2450–2561

    Article  CAS  PubMed  Google Scholar 

  2. Yan L, Zucker S, Toole BP (2005) Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 93:199–204

    CAS  PubMed  Google Scholar 

  3. Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 67:4182–4189

    Article  CAS  PubMed  Google Scholar 

  4. Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C, Toole BP (2009) Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 69:1293–1301

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

    Article  CAS  PubMed  Google Scholar 

  6. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  CAS  PubMed  Google Scholar 

  7. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML (2006) The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol Pharmacol 70:2108–2115

    Article  CAS  PubMed  Google Scholar 

  8. Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, Drewes LR (2001) Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport 12:761–765

    Article  CAS  PubMed  Google Scholar 

  9. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:627–632

    Article  Google Scholar 

  10. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19:3896–3904

    Article  CAS  PubMed  Google Scholar 

  11. Germann UA (1996) P-glycoprotein—a mediator of multidrug resistance in tumour cells. Eur J Cancer 32A:927–944

    Article  CAS  PubMed  Google Scholar 

  12. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7752

    Article  CAS  PubMed  Google Scholar 

  13. Kool M, de Haas M, Scheffer GL, Scheper RJ, van Eijk MJ, Juijn JA, Baas F, Borst P (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547

    CAS  PubMed  Google Scholar 

  14. Surowiak P, Materna V, Kaplenko I, Spaczynski M, Dolinska-Krajewska B, Gebarowska E, Dietel M, Zabel M, Lage H (2006) ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome. Clin Cancer Res 12:7149–7158

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Zou W, Li Y, Chen B, Xin X (2007) Bridge linkage role played by CD98hc of anti-tumor drug resistance and cancer metastasis on cisplatin-resistant ovarian cancer cells. Cancer Biol Ther 6:942–947

    Article  CAS  PubMed  Google Scholar 

  16. Su J, Chen X, Kanekura T (2009) A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett 273:140–147

    Article  CAS  PubMed  Google Scholar 

  17. Schneiderhan W, Scheler M, Holzmann KH, Marx M, Gschwend JE, Bucholz M, Gress TM, Seufferlein T, Adler G, Oswald F (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58:1391–1398

    Article  CAS  PubMed  Google Scholar 

  18. Creasman WJ (1998) Announcement, FIGO stages: 1988 revisions. Gynecol Oncol 5:125–127

    Google Scholar 

  19. Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E (2005) Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Proc Natl Acad Sci USA 102:16245–16250

    Article  CAS  PubMed  Google Scholar 

  20. Misra S, Ghatak S, Toole BP (2005) Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem 280:20310–20315

    Article  CAS  PubMed  Google Scholar 

  21. Zou W, Yang H, Hou X, Zhang W, Chen B, Xin X (2007) Inhibition of CD147 gene expression via RNA interference reduces tumor cell invasion, tumorigenicity and increases chemosensitivity to paclitaxel in HO-8910pm cells. Cancer Lett 248:211–218

    Article  CAS  PubMed  Google Scholar 

  22. Kuang YH, Chen X, Su J, Wu LS, Li J, Chang J, Qiu Y, Chen ZS, Kanekura T (2008) Proteome analysis of multidrug resistance of human oral squamous carcinoma cells using CD147 silencing. J Proteome Res 7:4784–4791

    Article  CAS  PubMed  Google Scholar 

  23. Jia L, Wei W, Cao J, Xu H, Miao X, Zhang J (2009) Silencing CD147 inhibits tumor progression and increases chemosensitivity in murine lymphoid neoplasm P388D1 cells. Ann Hematol 88:753–760

    Article  CAS  PubMed  Google Scholar 

  24. Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R (2003) EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis 20:161–169

    Article  CAS  PubMed  Google Scholar 

  25. Millimaggi D, Mari M, D’Ascenzo S, Carosa E, Jannini EA, Zucker S, Carta G, Pavan A, Dolo V (2007) Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9:349–357

    Article  CAS  PubMed  Google Scholar 

  26. Jin JS, Yao CW, Loh SH, Cheng MF, Hsieh DS, Bai CY (2006) Increasing expression of extracellular matrix metalloprotease inducer in ovary tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Int J Gynecol Pathol 25:140–146

    Article  PubMed  Google Scholar 

  27. Sillanpaa S, Anttila M, Suhonen K, Hamalainen K, Turpeenniemi-Hujanen T, Puistola U, Tammi M, Sironen R, Saarikoski S, Kosma VM (2007) Prognostic significance of extracellular matrix metalloproteinase inducer and matrix metalloproteinase 2 in epithelial ovarian cancer. Tumour Biol 28:280–289

    Article  CAS  PubMed  Google Scholar 

  28. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  29. Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29:541–549

    Article  CAS  PubMed  Google Scholar 

  30. Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F, Baltazar F (2008) Increased expression of monocarboxylate transporters 1, 2 and 4 in colorectal carcinomas. Virchows Arch 452:139–146

    Article  CAS  PubMed  Google Scholar 

  31. Pinheiro C, Longatto-Filho A, Ferreira L, Pereira SM, Etlinger D, Moreira MA, Jube LF, Queiroz GS, Schmitt F, Baltazar F (2008) Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma. Int J Gynecol Pathol 27:568–574

    Article  PubMed  Google Scholar 

  32. Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E (2007) Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther 6:1476–1479

    Article  CAS  PubMed  Google Scholar 

  33. Pinheiro C, Longatto-Filho A, Simoes K, Jacob CE, Bresciani CJ, Zilberstein B, Cecconello I, Alves VA, Schmitt F, Baltazar F (2009) The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer. Euro J Cancer 45:2418–2424

    Article  CAS  Google Scholar 

  34. Xing H, Wang S, Weng D, Chen G, Yang X, Zhou J, Xu G, Lu Y, Ma D (2007) Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Reports 17:117–122

    CAS  Google Scholar 

  35. Penson RT, Oliva E, Skates SJ, Glyptis T, Fuller AF Jr, Goodman A, Seiden MV (2004) Expression of multidrug resistance-1 protein inversely correlates with paclitaxel response and survival in ovarian cancer patients: a study in serial samples. Gynecol Oncol 93:98–106

    Article  CAS  PubMed  Google Scholar 

  36. Materna V, Pleger J, Hoffmann U, Lage H (2004) RNA expression of MDR1/P-glycoprotein, DNA-topoisomerase I, trans and MRP2 in ovarian carcinoma patients: correlation with chemotherapeutic response. Gynecol Oncol 94:152–160

    Article  CAS  PubMed  Google Scholar 

  37. Yokoyama Y, Sato S, Fukushi Y, Sakamoto T, Futagami M, Saito Y (1999) Significance of multi-drug-resistant proteins in predicting chemotherapy response and prognosis in epithelial ovarian cancer. J Obstet Gynaecol Res 25:387–394

    Article  CAS  PubMed  Google Scholar 

  38. Ozalp SS, Yalcin OT, Tanir M, Kabukcuoglu S, Etiz E (2002) Multidrug resistance gene-1 (Pgp) expression in epithelial ovarian malignancies. Eur J Gynaecol Oncol 23:337–340

    CAS  PubMed  Google Scholar 

  39. Chen H, Hao JL, Wang L, Li Y (2009) Coexpression of invasive markers (uPA, CD44) and multiple drug resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 101:432–440

    Article  CAS  PubMed  Google Scholar 

  40. Materna V, Liedert B, Thomale J, Lage H (2005) Protection of platinum-DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer 115:393–402

    Article  CAS  PubMed  Google Scholar 

  41. Ma JJ, Chen BL, Xin XY (2009) Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene. Arch Gynecol Obstet 279:149–157

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, Mi L, Wen N, Tian R, Wang L, Yao H, Feng Q, Zhang Y, Xing JL, Zhu P, Chen ZN (2007) HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 5:605–614

    Article  CAS  PubMed  Google Scholar 

  43. Dean NR, Newman JR, Helman EE, Zhang W, Safavy S, Weeks DM, Cunningham M, Snyder LA, Tang Y, Yan L, McNally LR, Buchsbaum DJ, Rosenthal EL (2009) Anti-EMMPRIN monoclonal antibody as a novel agent for therapy of head and neck cancer. Clin Cancer Res 15:4058–4065

    Article  CAS  PubMed  Google Scholar 

  44. Matsudaira H, Asakura T, Aoki K, Searashi Y, Matsuura T, Nakajima H, Tajiri H, Ohkawa K (2010) Target chemotherapy of anti-CD147 antibody-labeled liposome encapsulated GSH-DXR conjugate on CD147 highly expressed carcinoma cells. Int J Oncol 36:77–83

    CAS  PubMed  Google Scholar 

  45. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. QingKai Yu (Pathologist, Director of Department of Pathology, Henan Cancer Hospital, China) who assisted with the diagnosis of EOC. We also thank Dr John Allen (Centenary Institute, University of Sydney, Australia) for kindly providing an MDR1 positive control cell line. This study was partially funded by an international collaborative grant from Henan Health Board, China (HC and LW) as well as Career Development Fellowship from Cancer Institute NSW Australia (YL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Yong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Wang, L., Beretov, J. et al. Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression. Clin Exp Metastasis 27, 557–569 (2010). https://doi.org/10.1007/s10585-010-9345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9345-9

Keywords

Navigation