Skip to main content

Advertisement

Log in

Early incorporated endothelial cells as origin of metastatic tumor vasculogenesis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Vascularization of solid tumors is thought to occur by sprouting or intussusceptive angiogenesis, co-option of existing vessels, and vasculogenic mimicry after the onset of tumor hypoxia, when the tumor radius exceeds the oxygen diffusion distance. In contrast, here we show that individual endothelial cells that are incorporated into pre-hypoxic tumors give rise to tumor blood vessels via vasculogenesis. Small metastatic lung tumor sections obtained after tail-vein injection of a syngeneic breast cancer cell line in the nude mice were labeled with antibodies against endothelial cell markers. Immunofluorescence showed the incorporation and mixed growth of CD31-, Tie-2-, and CD105-positive endothelial cells in tumors with radii less than oxygen diffusion distance and subsequent development of blood vessels from these early-incorporated endothelial cells. This observation lays the foundation of a novel vasculogenic paradigm of tumor vascularization, where incorporation of endothelial cells and their growth among tumor cells occur before the onset of core hypoxia in lung metastatic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9

Similar content being viewed by others

References

  1. Olive PL, Vikse C, Trotter MJ (1992) Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol Biol Phys 22(3):397–402

    PubMed  CAS  Google Scholar 

  2. Angiogenesis FJ (2006) Annu Rev Med 57:1–18. doi:10.1146/annurev.med.57.121304.131306

    Article  Google Scholar 

  3. Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288. doi:10.1084/jem.133.2.275

    Article  PubMed  CAS  Google Scholar 

  4. Pandya NM, Dhalla NS, Santani DD (2006) Angiogenesis–a new target for future therapy. Vascul Pharmacol 44(5):265–274. doi:10.1016/j.vph.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  5. Eichhorn ME, Kleespies A, Angele MK et al (2007) Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg 392(3):371–379. doi:10.1007/s00423-007-0150-0

    Article  PubMed  CAS  Google Scholar 

  6. Leenders WP, Kusters B, de Waal RM (2002) Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9(2):83–87. doi:10.1080/10623320212006

    Article  PubMed  Google Scholar 

  7. de Waal RM, Leenders WP (2005) Sprouting angiogenesis versus co-option in tumor angiogenesis. EXS 2005(94):65–76

    Google Scholar 

  8. Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112(7–8):508–525. doi:10.1111/j.1600-0463.2004.apm11207-0810.x

    Article  PubMed  Google Scholar 

  9. Fox SB (2006) Quantitative angiogenesis in breast cancer. Methods Mol Med 120:161–187

    PubMed  CAS  Google Scholar 

  10. Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39(13):1835–1841. doi:10.1016/S0959-8049(03)00267-3

    Article  PubMed  CAS  Google Scholar 

  11. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502

    Article  PubMed  Google Scholar 

  12. Al-Mehdi AB, Patel M, Haroon A et al (2006) Increased depth of cellular imaging in the intact lung using far-red and near-infrared fluorescent probes. Int J Biomed Imaging 2006:1–7. doi:10.1155/IJBI/2006/37470

    Article  Google Scholar 

  13. Wong CW, Song C, Grimes MM et al (2002) Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol 161(3):749–753

    PubMed  Google Scholar 

  14. Al-Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6(1):100–102. doi:10.1038/71429

    Article  PubMed  CAS  Google Scholar 

  15. Haroon AT, Patel M, Al-Mehdi AB (2007) Lung metastatic load limitation with hyperbaric oxygen. Undersea Hyperb Med 34(2):83–90

    PubMed  CAS  Google Scholar 

  16. Elzarrad MK, Haroon A, Willecke K et al (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Medicine 6:20. doi:10.1186/1741-7015-6-20

    Article  PubMed  Google Scholar 

  17. Drake CJ (2003) Embryonic and adult vasculogenesis. Birth defects research. Part C, Embryo Today 69(1):73–82. doi:10.1002/bdrc.10003

    Article  CAS  Google Scholar 

  18. Rajantie I, Ilmonen M, Alminaite A et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7):2084–2086. doi:10.1182/blood-2004-01-0336

    Article  PubMed  CAS  Google Scholar 

  19. Zengin E, Chalajour F, Gehling UM et al (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551. doi:10.1242/dev.02315

    Article  PubMed  CAS  Google Scholar 

  20. Ergun S, Hohn HP, Kilic N et al (2008) Endothelial and hematopoietic progenitor cells (EPCs and HPCs): hand in hand fate determining partners for cancer cells. Stem Cell Rev 4(3):169–177. doi:10.1007/s12015-008-9028-y

    Article  PubMed  Google Scholar 

  21. Alvarez DF, Huang L, King JA et al (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294(3):L419–L430. doi:10.1152/ajplung.00314.2007

    Article  PubMed  CAS  Google Scholar 

  22. Weir EK, Archer SL, Reeves JT (2000) The fetal and neonatal pulmonary circulation. Wiley-Blackwell, Hoboken, NJ, USA

  23. Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8(3):294–300. doi:10.1111/j.1582-4934.2004.tb00319.x

    Article  PubMed  CAS  Google Scholar 

  24. Bagley RG, Walter-Yohrling J, Cao X et al (2003) Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res 63(18):5866–5873

    PubMed  CAS  Google Scholar 

  25. De Palma M, Naldini L (2006) Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 1766(1):159–166

    PubMed  Google Scholar 

  26. Duda DG, Cohen KS, Kozin SV et al (2006) Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107(7):2774–2776. doi:10.1182/blood-2005-08-3210

    Article  PubMed  CAS  Google Scholar 

  27. El-Gohary YM, Silverman JF, Olson PR et al (2007) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol 127(4):572–579. doi:10.1309/X6NXYE57DLUE2NQ8

    Article  PubMed  CAS  Google Scholar 

  28. Gebb S, Stevens T (2004) On lung endothelial cell heterogeneity. Microvasc Res 68(1):1–12. doi:10.1016/j.mvr.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  29. Arciniegas E, Neves CY, Carrillo LM et al (2005) Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium 12(4):193–200. doi:10.1080/10623320500227283

    Article  PubMed  CAS  Google Scholar 

  30. Tuder RM, Cool CD, Yeager M et al (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22(3):405–418. doi:10.1016/S0272-5231(05)70280-X

    Article  PubMed  CAS  Google Scholar 

  31. Trosko JE, Ruch RJ (1998) Cell–cell communication in carcinogenesis. Front Biosci 3:d208–d236

    PubMed  CAS  Google Scholar 

  32. Ruch RJ, Porter S, Koffler LD et al (2001) Defective gap junctional intercellular communication in lung cancer: loss of an important mediator of tissue homeostasis and phenotypic regulation. Exp Lung Res 27(3):231–243. doi:10.1080/019021401300053984

    Article  PubMed  CAS  Google Scholar 

  33. Fukushima M, Hattori Y, Yoshizawa T et al (2007) Combination of non-viral connexin 43 gene therapy and docetaxel inhibits the growth of human prostate cancer in mice. Int J Oncol 30(1):225–231

    PubMed  CAS  Google Scholar 

  34. Jimenez T, Fox WP, Naus CC et al (2006) Connexin over-expression differentially suppresses glioma growth and contributes to the bystander effect following HSV-thymidine kinase gene therapy. Cell Commun Adhes 13(1–2):79–92. doi:10.1080/15419060600631771

    Article  PubMed  CAS  Google Scholar 

  35. Trosko JE, Chang CC (2001) Role of stem cells and gap junctional intercellular communication in human carcinogenesis. Radiat Res 155(1 Pt 2):175–180. doi:10.1667/0033-7587(2001)155[0175:ROSCAG]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  36. Ito A, Katoh F, Kataoka TR et al (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105(9):1189–1197. doi:10.1172/JCI8257

    Article  PubMed  CAS  Google Scholar 

  37. Saunders MM, Seraj MJ, Li Z et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61(5):1765–1767

    PubMed  CAS  Google Scholar 

  38. Tate AW, Lung T, Radhakrishnan A et al (2006) Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66(1):19–31. doi:10.1002/pros.20317

    Article  PubMed  CAS  Google Scholar 

  39. King J, Hamil T, Creighton J et al (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67(2):139–151. doi:10.1016/j.mvr.2003.11.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH P50 AT00428-01 Project 3 (ABA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu-Bakr Al-Mehdi.

Additional information

Authors’ contribution

MKE carried out the fluorescence imaging, immunofluorescence, experimental metastatic tumor development in the nude mice, and organized the data. ATH generated experimental metastatic tumors in the nude mice. DJR helped with cell culture and imaging. ABA conceived and designed the study and drafted the manuscript. All authors read and approved the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzarrad, K., Haroon, A., Reed, D. et al. Early incorporated endothelial cells as origin of metastatic tumor vasculogenesis. Clin Exp Metastasis 26, 589–598 (2009). https://doi.org/10.1007/s10585-009-9257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9257-8

Keywords

Navigation