Skip to main content

Advertisement

Log in

Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether tumor cells as well as tumor-associated macrophages (TAMs) contribute to the generation of protease activities essential to tumor cell invasiveness, such as matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9), and the urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR). We found that the enhanced invasiveness through Matrigel-coated filters of B16 murine melanoma cells stimulated with IFNγ was associated with an higher expression of uPAR and MMP-9 in these cells. Moreover, treatment with anti-MMP-9 or anti-uPAR monoclonal antibodies abrogated the increase of invasiveness in IFNγ-stimulated melanoma cells, suggesting a cooperation of uPA system and MMP-9 in cytokine-stimulated invasiveness. Invasiveness through Matrigel was also enhanced in B16 melanoma cells exposed to a medium conditioned by TAMs, represented in our experimental model by thioglycollate-elicited macrophages co-cultivated with melanoma cells. Macrophages isolated from these co-cultures were found to express higher levels of uPAR and MMP-9 compared to macrophage cultures alone, and the pro-invasive activity of the co-culture-conditioned medium was abrogated by anti-MMP-9 monoclonal antibodies, but not anti-uPAR monoclonal antibodies. Furthermore, the enhanced uPAR and MMP-9 expression in macrophages co-cultivated with tumor cells seems a rather specific phenomenon, generated through a cell-to-cell contact mechanism. On the whole, our data point to a cooperation between tumor cells and macrophages elicited by tumor cells themselves in generating key enzymes essential in the promotion of tumor invasiveness, such as uPAR and MMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andreasen PA, Kjoller L, Christensen L et al (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22

    Article  PubMed  CAS  Google Scholar 

  2. Mignatti P, Rifkin DB (2000) Nonenzimatic interactions between proteinases and the cell surface: novel roles in normal and malignant cell physiology. Adv Cancer Res 78:103–157

    Article  PubMed  CAS  Google Scholar 

  3. Del Rosso M, Fibbi G, Pucci M et al (2002) Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis 193:193–207

    Article  Google Scholar 

  4. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  5. Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22:205–222

    Article  PubMed  CAS  Google Scholar 

  6. De Vries TJ, Quax PH, Denijn M et al (1994) Plasminogen activators, their inhibitors, and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Pathol 144:70–81

    PubMed  Google Scholar 

  7. Hofmann UB, Westphal JR, Van Muijen GN et al (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344

    Article  PubMed  CAS  Google Scholar 

  8. Hofmann UB, Westphal JR, Waas ET et al (1999) Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 81:774–782

    Article  PubMed  CAS  Google Scholar 

  9. D’Alessio S, Margheri F, Pucci M et al (2004) Antisense oligodeoxynucleotides for urokinase-plasminogen activator receptor have anti-invasive and anti-proliferative effects in vitro and inhibit spontaneous metastases of human melanoma in mice. Int J Cancer 110:125–133

    Article  PubMed  CAS  Google Scholar 

  10. Itoh T, Tanioka M, Matsuda H et al (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181

    Article  PubMed  CAS  Google Scholar 

  11. Bjorklund M, Heikkila P, Koivunen E (2004) Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J Biol Chem 279:29589–29597

    Article  PubMed  CAS  Google Scholar 

  12. Liotta LA, Khon EC (2001) The microenvironment of the tumor–host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  13. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  14. Fidler IF, Schroit AJ (1998) Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta 948:151–173

    Google Scholar 

  15. Cecconi O, Calorini L, Mannini A et al (1997) Enhancement of lung-colonizing potential of murine tumor cell lines co-cultivated with activated macrophages. Clin Exp Metastasis 15:94–101

    Article  PubMed  CAS  Google Scholar 

  16. Calorini L, Mannini A, Bianchini F et al (1999) Biological properties associated with the enhanced lung-colonizing potential in a B16 murine melanoma line grown in a medium conditioned by syngeneic Corynebacterium parvum-elicited macrophages. Clin Exp Metastasis 17:889–895

    Article  PubMed  CAS  Google Scholar 

  17. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  18. Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  PubMed  CAS  Google Scholar 

  19. Lin EY, Nguyena AV, Russellb RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed  CAS  Google Scholar 

  20. Fallani A, Calorini L, Mannini A et al (2006) Platelet-activating factor (PAF) is the effector of IFN gamma-stimulated invasiveness and motility in a B16 melanoma line. Prostaglandins Other Lipid Mediat 81:171–177

    Article  PubMed  CAS  Google Scholar 

  21. Gattoni-Celli S, Calorini L, Simile MM et al (1993) Modulation by MHC class I antigens of the biology of melanoma cells. Non immunological mechanism. Melanoma Res 3:285–289

    PubMed  CAS  Google Scholar 

  22. Chen TR (1997) In situ detection of Mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res 104:255–262

    Article  Google Scholar 

  23. Bianchini F, D’Alessio S, Fibbi G et al (2006) Cytokine-dependent invasiveness in B16 murine melanoma cells: role of uPA system and MMP-9. Oncol Rep 15:709–714

    PubMed  CAS  Google Scholar 

  24. Thompson JE, Cubbon RM, Cummings RT et al (2002) Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 12:1219–1223

    Article  PubMed  CAS  Google Scholar 

  25. Jaleel M, Shenoy AR, Visweswariah SS (2004) Tyrphostins are inhibitors of guanylyl and adenylyl cyclases. Biochemistry 43:8247–8255

    Article  PubMed  CAS  Google Scholar 

  26. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  27. Kim J, Yu W, Kovalski K et al (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94:353–362

    Article  PubMed  CAS  Google Scholar 

  28. Lakka SS, Gondi CS, Dinh DH et al (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280:21882–21892

    Article  PubMed  CAS  Google Scholar 

  29. Harvey SR, Hurd TC, Markus G et al (2003) Evaluation of urinary plasminogen activator, its receptor, matrix metalloproteinase-9, and von Willebrand factor in pancreatic cancer. Clin Cancer Res 9:4935–4943

    PubMed  CAS  Google Scholar 

  30. Saito K, Takeha S, Shiba K et al (2000) Clinicopathologic significance of urokinase receptor- and MMP-9-positive stromal cells in human colorectal cancer: functional multiplicity of matrix degradation on hematogenous metastasis. Int J Cancer 86:24–29

    Article  PubMed  CAS  Google Scholar 

  31. Denkert C, Kobel M, Berger S et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308

    PubMed  CAS  Google Scholar 

  32. Itoh T, Tanioka M, Matsuda H et al (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181

    Article  PubMed  CAS  Google Scholar 

  33. Huang S, Van Arsdall M, Tedjarati S et al (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94:1134–1142

    PubMed  CAS  Google Scholar 

  34. Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP-9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Murst ex 60% and Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lido Calorini.

Additional information

This paper was presented in part at the “11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine” 12–14 October 2006, Hersonissos, Crete, Greece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marconi, C., Bianchini, F., Mannini, A. et al. Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells. Clin Exp Metastasis 25, 225–231 (2008). https://doi.org/10.1007/s10585-007-9136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9136-0

Keywords

Navigation