Skip to main content

Advertisement

Log in

Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The progression of tumours to malignancy is commonly considered to arise through lineal evolution, a process in which mutations conferring pro-oncogenic cellular phenotypes are acquired by a succession of ever-more dominant clones. However, this model is at odds with the persistent polyclonality observed in many cancers. We propose that an alternative mechanism for tumour progression, called interclonal cooperativity, is likely to play a role at stages of tumour progression when mutations cause microenvironmental changes, such as occur with epithelial-mesenchymal transitions (EMTs). Interclonal cooperativity occurs when cancer cell–cancer cell interactions produce an emergent malignant phenotype from individually non-malignant clones. In interclonal cooperativity, the oncogenic mutations occur in different clones within the tumour that complement each other and cooperate in order to drive progression. This reconciles the accepted genetic and evolutionary basis of cancers with the observed polyclonality in tumours. Here, we provide a conceptual basis for examining the importance of cancer cell–cancer cell interactions to the behaviour of tumours and propose specific mechanisms by which clonal diversity in tumours, including that provided by EMTs, can drive the progression of tumours to malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  3. Cahill DP, Kinzler KW, Vogelstein B et al (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biol 9:M57–60

    Article  PubMed  CAS  Google Scholar 

  4. Hay ED (1995). An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    Article  PubMed  CAS  Google Scholar 

  5. Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis:a role for epithelial–mesenchymal transition? Cancer Res 65:5991–5995; discussion 5995

    Google Scholar 

  6. Lebret SC, Newgreen DF, Thompson EW et al (2007) Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 9:R19

    Article  PubMed  CAS  Google Scholar 

  7. Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  8. Lebret SC, Newgreen DF, Waltham MC et al (2006) Myoepithelial molecular markers in human breast carcinoma PMC42-LA cells are induced by extracellular matrix and stromal cells. In Vitro Cell Dev Biol Anim 42:298–307

    PubMed  CAS  Google Scholar 

  9. Chaffer CL, Brennan JP, Slavin JL et al (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278

    Article  PubMed  CAS  Google Scholar 

  10. Chaffer CL, Thompson EW, Williams ED (2007) Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185:7–19

    Article  PubMed  Google Scholar 

  11. Choi KH, Chen CJ, Kriegler M et al (1988) An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell 53:519–529

    Article  PubMed  CAS  Google Scholar 

  12. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    Article  PubMed  CAS  Google Scholar 

  13. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling:tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  PubMed  CAS  Google Scholar 

  14. Sissung TM, Price DK, Sparreboom A et al (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1:implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4:135–150

    Article  PubMed  CAS  Google Scholar 

  15. Chien WM, Rabin S, Macias E et al (2006) Genetic mosaics reveal both cell-autonomous and cell-nonautonomous function of murine p27Kip1. Proc Natl Acad Sci USA 103:4122–4127

    Article  PubMed  CAS  Google Scholar 

  16. Garcia SB, Novelli M, Wright NA (2000) The clonal origin and clonal evolution of epithelial tumours. Int J Exp Pathol 81:89–116

    Article  PubMed  CAS  Google Scholar 

  17. Going JJ (2003) Epithelial carcinogenesis: challenging monoclonality. J Pathol 200:1–3

    Article  PubMed  CAS  Google Scholar 

  18. Heim S, Teixeira MA, Pandis N (2001) Are some breast carcinomas polyclonal in origin?. J Pathol 194:395–397

    Article  PubMed  CAS  Google Scholar 

  19. Teixeira MR, Tsarouha H, Kraggerud SM et al (2001) Evaluation of breast cancer polyclonality by combined chromosome banding and comparative genomic hybridization analysis. Neoplasia 3:204–214

    Article  PubMed  CAS  Google Scholar 

  20. Winton DJ, Blount MA, Ponder BA (1989) Polyclonal origin of mouse skin papillomas. Br J Cancer 60:59–63

    PubMed  CAS  Google Scholar 

  21. Cheng L, Gu J, Ulbright TM et al (2002) Precise microdissection of human bladder carcinomas reveals divergent tumor subclones in the same tumor. Cancer 94:104–110

    Article  PubMed  Google Scholar 

  22. Asplund A, Sivertsson A, Backvall H et al (2005) Genetic mosaicism in basal cell carcinoma. Exp Dermatol 14:593–600

    Article  PubMed  CAS  Google Scholar 

  23. Novelli MR, Williamson JA, Tomlinson IP et al (1996) Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272:1187–1190

    Article  PubMed  CAS  Google Scholar 

  24. Konishi N, Hiasa Y, Matsuda H et al (1995) Intratumor cellular heterogeneity and alterations in ras oncogene and p53 tumor suppressor gene in human prostate carcinoma. Am J Pathol 147:1112–1122

    PubMed  CAS  Google Scholar 

  25. Giaretti W, Monaco R, Pujic N et al (1996) Intratumor heterogeneity of K-ras2 mutations in colorectal adenocarcinomas: association with degree of DNA aneuploidy. Am J Pathol 149:237–245

    PubMed  CAS  Google Scholar 

  26. Alvarado C, Beitel LK, Sircar K et al (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res 65:8514–8518

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Garcia I, Sole RV, Costa J (2002) Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci USA 99:13085–13089

    Article  PubMed  CAS  Google Scholar 

  28. Agar NS, Halliday GM, Barnetson RS et al (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci USA 101:4954–4959

    Article  PubMed  CAS  Google Scholar 

  29. Jones AC, Sampson JR, Cheadle JP (2001) Low level mosaicism detectable by DHPLC but not by direct sequencing. Hum Mutat 17:233–234

    Article  PubMed  CAS  Google Scholar 

  30. Backvall H, Asplund A, Gustafsson A et al (2005) Genetic tumor archeology: microdissection and genetic heterogeneity in squamous and basal cell carcinoma. Mutat Res 571:65–79

    PubMed  Google Scholar 

  31. Novelli M, Cossu A, Oukrif D et al (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci USA 100:3311–3314

    Article  PubMed  CAS  Google Scholar 

  32. Going JJ, Abd El-Monem HM, Craft JA (2001) Clonal origins of human breast cancer. J Pathol 194:406–412

    Article  PubMed  CAS  Google Scholar 

  33. Lyons JG, Siew K, O’Grady RL (1989) Cellular interactions determining the production of collagenase by a rat mammary carcinoma cell line. Int J Cancer 43:119–125

    Article  PubMed  CAS  Google Scholar 

  34. Martorana AM, Zheng G, Crowe TC et al (1998) Epithelial cells upregulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Res 58:4970–4979

    PubMed  CAS  Google Scholar 

  35. Zheng G, Lyons JG (2002) Cyclosporin A improves the selection of cells transfected with the puromycin acetyltransferase gene. BioTechniques 33:32–34

    PubMed  Google Scholar 

  36. Israel L (1990) Accelerated genetic destabilization and dormancy: two distinct causes of resistance in metastatic cells; clinical magnitude, therapeutic approaches. Clin Exp Metastasis 8:1–11

    Article  PubMed  CAS  Google Scholar 

  37. Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197–205

    Article  PubMed  CAS  Google Scholar 

  38. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458

    Article  PubMed  CAS  Google Scholar 

  39. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  PubMed  CAS  Google Scholar 

  40. Van den Broecke C, Vleminckx K, De Bruyne G et al (1996) Morphotypic plasticity in vitro and in nude mice of epithelial mouse mammary cells (NMuMG) displaying an epithelioid (e) or a fibroblastic (f) morphotype in culture. Clin Exp Metastasis 14:282–296

    PubMed  Google Scholar 

  41. Agiostratidou G, Hulit J, Phillips GR et al (2007) Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia 12:127–133

    Article  PubMed  Google Scholar 

  42. Petersen OW, Nielsen HL, Gudjonsson T et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402

    PubMed  CAS  Google Scholar 

  43. Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    PubMed  CAS  Google Scholar 

  44. Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101:816–829

    Article  PubMed  CAS  Google Scholar 

  45. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  PubMed  CAS  Google Scholar 

  46. Lee JM, Dedhar S, Kalluri R et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  Google Scholar 

  47. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  PubMed  CAS  Google Scholar 

  48. Boyer B, Roche S, Denoyelle M et al (1997) Src and ras are involved in separate pathways in epithelial cell scattering. EMBO J 16:5904–5913

    Article  PubMed  CAS  Google Scholar 

  49. Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4:487–494

    Article  PubMed  CAS  Google Scholar 

  50. Chua HL, Bhat-Nakshatri P, Clare SE et al (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26:711–724

    Article  PubMed  CAS  Google Scholar 

  51. Frank SA (2003) Somatic mosaicism and cancer: inference based on a conditional Luria-Delbruck distribution. J Theor Biol 223:405–412

    Article  PubMed  Google Scholar 

  52. Barrett MT, Sanchez CA, Prevo LJ et al (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22:106–109

    Article  PubMed  CAS  Google Scholar 

  53. Kurose K, Gilley K, Matsumoto S et al (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    Article  PubMed  CAS  Google Scholar 

  54. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  55. Poste G, Doll J, Fidler IJ (1981) Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells. Proc Natl Acad Sci USA 78:6226–6230

    Article  PubMed  CAS  Google Scholar 

  56. Talmadge JE, Fidler IJ (1982) Cancer metastasis is selective or random depending on the parent tumour population. Nature 297:593–594

    Article  PubMed  CAS  Google Scholar 

  57. Talmadge JE, Wolman SR, Fidler IJ (1982) Evidence for the clonal origin of spontaneous metastases. Science 217:361–363

    Article  PubMed  CAS  Google Scholar 

  58. Waghorne C, Thomas M, Lagarde A et al (1988) Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Cancer Res 48:6109–6114

    PubMed  CAS  Google Scholar 

  59. Price JE, Bell C, Frost P (1990) The use of a genotypic marker to demonstrate clonal dominance during the growth and metastasis of a human breast carcinoma in nude mice. Int J Cancer 45:968–971

    Article  PubMed  CAS  Google Scholar 

  60. Theodorescu D, Cornil I, Sheehan C et al (1991) Dominance of metastatically competent cells in primary murine breast neoplasms is necessary for distant metastatic spread. Int J Cancer 47:118–123

    Article  PubMed  CAS  Google Scholar 

  61. Zhang X, Su L, Pirani AA et al (2006) Understanding metastatic SCCHN cells from unique genotypes to phenotypes with the aid of an animal model and DNA microarray analysis. Clin Exp Metastasis 23:209–222

    Article  PubMed  CAS  Google Scholar 

  62. Chambers AF, Wilson S (1988) Use of NeoR B16F1 murine melanoma cells to assess clonality of experimental metastases in the immune-deficient chick embryo. Clin Exp Metastasis 6:171–182

    Article  PubMed  CAS  Google Scholar 

  63. Weiss L, Holmes JC, Ward PM (1983) Do metastases arise from pre-existing subpopulations of cancer cells? Br J Cancer 47:81–89

    PubMed  CAS  Google Scholar 

  64. Vaage J (1988) Metastasizing potentials of mouse mammary tumors and their metastases. Int J Cancer 41:855–858

    PubMed  CAS  Google Scholar 

  65. Samiei M, Waghorne CG (1991) Clonal selection within metastatic SP1 mouse mammary tumors is independent of metastatic potential. Int J Cancer 47:771–775

    Article  PubMed  CAS  Google Scholar 

  66. Moffett BF, Baban D, Bao L et al (1992) Fate of clonal lineages during neoplasia and metastasis studied with an incorporated genetic marker. Cancer Res 52:1737–1743

    PubMed  CAS  Google Scholar 

  67. Poste G, Tzeng J, Doll J et al (1982) Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases. Proc Natl Acad Sci USA 79:6574–6578

    Article  PubMed  CAS  Google Scholar 

  68. Hill RP, Chambers AF, Ling V et al (1984) Dynamic heterogeneity:rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224:998–1001

    Article  PubMed  CAS  Google Scholar 

  69. Nanni P, De Giovanni C, Lollini PL et al (1986) Clones with different metastatic capacity and variant selection during metastasis:a problematic relationship. J Natl Cancer Inst 76:87–93

    PubMed  CAS  Google Scholar 

  70. Miller BE, Miller FR, Wilburn D et al (1988) Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Res 48:5747–5753

    PubMed  CAS  Google Scholar 

  71. Miller BE, McInerney D, Jackson D et al (1986) Metabolic cooperation between mouse mammary tumor subpopulations in three-dimensional collagen gel cultures. Cancer Res 46:89–93

    PubMed  CAS  Google Scholar 

  72. Miller FR, McEachern D, Miller BE (1990) Efficiency of communication between tumour cells in collagen gel cultures. Br J Cancer 62:360–363

    PubMed  CAS  Google Scholar 

  73. Miller F (1983) Tumor subpopulation interactions in metastasis. Invasion Metastasis 3:234–242

    PubMed  CAS  Google Scholar 

  74. Montaner S, Sodhi A, Molinolo A et al (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    Article  PubMed  CAS  Google Scholar 

  75. Maley CC, Galipeau PC, Finley JC et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38:468–473

    Article  PubMed  CAS  Google Scholar 

  76. Alarcon T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Sim 3:440–475

    Article  CAS  Google Scholar 

  77. Cristini V, Frieboes HB, Gatenby R et al (2005) Morphologic instability and cancer invasion. Clin Cancer Res 11:6772–6779

    Article  PubMed  CAS  Google Scholar 

  78. Anderson AR (2005) A hybrid mathematical model of solid tumour invasion:the importance of cell adhesion. Math Med Biol 22:163–186

    Article  PubMed  Google Scholar 

  79. Anderson AR, Weaver AM, Cummings PT et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127:905–915

    Article  PubMed  CAS  Google Scholar 

  80. Steinberg MS (1962) On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc Natl Acad Sci USA 48:1769–1776

    Article  PubMed  CAS  Google Scholar 

  81. Steinberg MS (1962) On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness. and the absence of directed migration. Proc Natl Acad Sci USA 48:1577–1582

    Article  PubMed  CAS  Google Scholar 

  82. Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell-cell adhesion. J Theor Biol 243:98–113

    Article  PubMed  CAS  Google Scholar 

  83. Coskun H, Li Y, Mackey MA (2007) Ameboid cell motility:a model and inverse problem, with an application to live cell imaging data. J Theor Biol 244:169–179

    Article  PubMed  CAS  Google Scholar 

  84. Gracheva ME, Othmer HG (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66:167–193

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Sydney Cancer Centre Foundation and Cancer Council NSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guy Lyons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, J.G., Lobo, E., Martorana, A.M. et al. Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions. Clin Exp Metastasis 25, 665–677 (2008). https://doi.org/10.1007/s10585-007-9134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9134-2

Keywords

Navigation