Skip to main content

Advertisement

Log in

Uterine smooth muscle cells increase invasive ability of endometrial carcinoma cells through tumor–stromal interaction

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The incidence of lymph node metastasis by endometrial carcinoma (EMCA) increases with the depth of myometrial invasion, and this depth of invasion has been found to have a major impact on the outcome. In the present study, we assessed the effect of tumor–stromal interactions on the invasive behavior of EMCA cells and examined the involvement of SDF-1alpha/CXCL12-CXCR4 in the interaction of EMCA cells and uterine smooth muscle cells (UtSMCs). We investigated whether SDF-1alpha/CXCL12 produced and secreted from UtSMCs induces EMCA cell migration by using 5 human EMCA cell lines such as AMEC and RL95 cells. The SDF-1alpha/CXCL12 concentration in conditioned medium (CM) of UtSMCs(was 4,120 ± 530 pg/ml. Treatments with CM of UtSMCs and plated UtSMCs significantly induced both AMEC and RL95 cell migration. The induced cell migrations were significantly inhibited by CXCR4 mAb (12G5) and CXCR4 antagonist (AMD3100) pre-treatments. Treatments with UtSMCs CM to AMEC and RL95 cells stimulated Akt phosphorylation in a time-dependent manner. Pre-treatment of AMEC and RL95 cells with wortmannin as a PI3K inhibitor significantly inhibited UtSMCs CM-induced cell migration. The SDF-1alpha/CXCL12-CXCR4 chemokine axis between UtSMCs and EMCA played an important role in the muscular infiltration of endometrial cancer through activation of PI3K-Akt signaling pathway. Suppression of this pathway could be an effective target for the treatment of early uterine body cancer in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T et al (2002) Cancer statistics. CA Cancer J Clin 52:23–24

    Article  PubMed  Google Scholar 

  2. Lotocki RJ, Copeland LJ, DePetrillo AD et al (1983) Stage I endometrial Adenocarcinoma: treatment results in 835 patients. Am J Obstet Gynecol 146:141–144

    PubMed  CAS  Google Scholar 

  3. Williams JW, Hirschowitz L (2006) Assessment of uterine wall thickness and position of the vascular plexus in the deep myometrium: implications for the measurement of depth of myometrial invasion of endometrial carcinomas. Int J Gynecol Pathol 25(1):59–64

    Article  PubMed  Google Scholar 

  4. Gleave M, Heieh JT, Gao CA et al (1991) Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51:37 53–61

    Google Scholar 

  5. Nakamura T, Matsumoto K, Kiritoshi A et al (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor–stromal interactions. Cancer Res 57:3305–3313

    PubMed  CAS  Google Scholar 

  6. Javier R, Sourla A, Koutsilieris M et al (1997) Stromal fibroblasts are require for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 17:1551–1557

    Google Scholar 

  7. Anderson IC, Mari SE, Broderick RJ et al (2000) The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast co-culture. Caner Res 60:269–272

    CAS  Google Scholar 

  8. Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science (Wash DC) 303:845–851

    Article  CAS  Google Scholar 

  9. Muerkoster S, Wegehenkel K, Arlt A et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1 beta. Cancer Res 64:1331–1337

    Article  PubMed  Google Scholar 

  10. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  11. Campbell JI, Hedrick J, Zlotnik A et al (1998) Chemokines and the arrest of lymphocytes rolling under flowing conditions. Science 16:381–384

    Article  Google Scholar 

  12. Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91:2305–2309

    Article  PubMed  CAS  Google Scholar 

  13. Tashiro K, Tada H, Heiker R et al (1993) Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261:600–603

    Article  PubMed  CAS  Google Scholar 

  14. Shirozu M, Nakano T, Inazawa J (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF-1) gene. Genomics 28:495–500

    Article  PubMed  CAS  Google Scholar 

  15. Libura J, Drukala J, Majka M et al (2002) CXCR4-SDF-1 signaling is active in rhabdmyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100:2597–2606

    Article  PubMed  CAS  Google Scholar 

  16. Femandis AZ, Prasad A, Band H et al (2004) Regulation of CXCR4 mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167

    Article  CAS  Google Scholar 

  17. Zou YR, Kottmann AH, Kuroda M et al (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

  18. Nagasawa UT, Tachibana UK, Kishimoto T (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopiesis and HIV infection. Semin immunol 10:179–185

    Article  PubMed  CAS  Google Scholar 

  19. Salcedo R, Wasserman K, Young HA et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal derived factor-1α. Am J Pathol 154:1125–1135

    PubMed  CAS  Google Scholar 

  20. Tachibana K, Hirota S, Iizasa H et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    Article  PubMed  CAS  Google Scholar 

  21. Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    PubMed  CAS  Google Scholar 

  22. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  23. Juarez J, Bradstock KF, Gottlieb DJ et al (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 17(7):1294–1300

    Article  PubMed  CAS  Google Scholar 

  24. Mizokami Y, Kajiyama H, Shibata K et al (2004) Stromal cell-derived factor1α-induced cell proliferation and its possible regulation by CD26/Dipeptidyl peptidase IV in endometrial adenocarcinoma. Int. J. Cancer 110:652–659

    Article  PubMed  CAS  Google Scholar 

  25. Bertolini F, Dell’Agnola C, Mancoso P et al (2002) CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Res 62:106–3112

    Google Scholar 

  26. Rubin JB, Kung AL, Klein RS et al (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumor. Proc Natl Acad Sci USA 100:13513–13518

    Article  PubMed  CAS  Google Scholar 

  27. Scotton CJ, Wilson JL, Scott K et al (2002) Multiple actions of chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

    PubMed  CAS  Google Scholar 

  28. Hwang JH, Chung HK, Kim DW et al (2003) CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrinol Metab 88:408–416

    Article  PubMed  CAS  Google Scholar 

  29. Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effect of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17:792–803

    Article  PubMed  CAS  Google Scholar 

  30. Murakami T, Maki W, Cardones AR et al (2002) Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 62:5930–5938

    Google Scholar 

  31. Chinni SR, Sivalogan S, Dong Z et al (2006) CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 66:32–48

    Article  PubMed  CAS  Google Scholar 

  32. Peng SB, Peek V, Zhai Y et al (2005) Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1 alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res 3(4):227–236

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyosumi Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, H., Shibata, K., Kajiyama, H. et al. Uterine smooth muscle cells increase invasive ability of endometrial carcinoma cells through tumor–stromal interaction. Clin Exp Metastasis 24, 423–429 (2007). https://doi.org/10.1007/s10585-007-9079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9079-5

Keywords

Navigation