Skip to main content

Advertisement

Log in

Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Loss of E-cadherin triggers peritoneal dissemination, leading to an adverse prognosis for most patients with epithelial ovarian carcinoma (EOC). Because TWIST mainly regulates the epithelial-to-mesenchymal transition and is one of the E-cadherin repressors, we investigated the possibility that TWIST expression affects peritoneal metastasis of EOC using siRNA technique. In the present study, we showed a correlation between TWIST expression and EOC cellular morphology. Furthermore, we demonstrated that the suppression of TWIST expression in EOC cells (HEY) alters the cellular morphology from a fibroblastic and motile phenotype to an epithelial phenotype, and inhibits the adhesion of these cells to mesothelial monolayers. To investigate the mechanism by which down-regulation of TWIST leads to inhibition of adhesion to mesothelial cells (MCs), expression of adhesion molecules (CD29, CD44 and CD54) were observed. Moreover, matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase, important markers associated with invasive and metastatic potential, were remarkably reduced. This findings suggests that reduced expression of TWIST suppresses the multistep process of peritoneal dissemination (detachment from the primary lesion, adhesion to MCs and invasion of MCs) and may be a potential therapeutic target for the treatment of this carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pisani P, Parkin DM, Bray F et al (1999) Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83:870–873

    Article  PubMed  Google Scholar 

  2. Naora H, Montell DJ (2005) Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 5:355–366

    Article  PubMed  CAS  Google Scholar 

  3. Kikkawa F, Matsuzawa K, Arii Y et al (2000) Randomized trial of cisplatin and carboplatin versus cisplatin, vinblastine and bleomycin in ovarian cancer. Gynecol Obstet Invest 50:269–274

    Article  PubMed  CAS  Google Scholar 

  4. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A et al (2002) The cadherin–catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991

    Article  PubMed  CAS  Google Scholar 

  5. Takeichi M (1993) Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5:806–811

    Article  PubMed  CAS  Google Scholar 

  6. Varner JA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8:724–730

    Article  PubMed  CAS  Google Scholar 

  7. Ruoslahti E (1999) Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76:1–20

    Article  PubMed  CAS  Google Scholar 

  8. Orr FW, Wang HH, Lafrenie RM et al (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329

    Article  PubMed  CAS  Google Scholar 

  9. Holly SP, Larson MK, Parise LV et al (2000) Multiple roles of integrins in cell motility. Exp Cell Res 261:69–74

    Article  PubMed  CAS  Google Scholar 

  10. Felding-Habermann B (2003) Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 20:203–213

    Article  PubMed  CAS  Google Scholar 

  11. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  12. Thiery JP, Chopin D (1999) Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 18:31–42

    Article  PubMed  CAS  Google Scholar 

  13. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  14. Kang Y, Massague J (2004) Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118:277–279

    Article  PubMed  CAS  Google Scholar 

  15. Kajiyama H, Kikkawa F, Maeda O et al (2002) Increased expression of dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian carcinoma patients. Oncology 63:158–165

    Article  PubMed  CAS  Google Scholar 

  16. Kajiyama H, Kikkawa F, Khin E et al (2003) Dipeptidyl peptidase IV overexpression induces up-regulation of E-cadherin and tissue inhibitors of matrix metalloproteinases, resulting in decreased invasive potential in ovarian carcinoma cells. Cancer Res 63:2278–2283

    PubMed  CAS  Google Scholar 

  17. Kajiyama H, Kikkawa F, Suzuki T et al (2002) Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res 62:2753–2757

    PubMed  CAS  Google Scholar 

  18. Melchiori A, Mortarini R, Carlone S et al (1995) The alpha 3 beta 1 integrin is involved in melanoma cell migration and invasion. Exp Cell Res 219:233–242

    Article  PubMed  CAS  Google Scholar 

  19. Bartolazzi A, Cerboni C, Nicotra MR et al (1994) Transformation and tumor progression are frequently associated with expression of the alpha 3/beta 1 heterodimer in solid tumors. Int J Cancer 58:488–491

    Article  PubMed  CAS  Google Scholar 

  20. Van Waes C, Surh DM, Chen Z et al (1995) Increase in suprabasilar integrin adhesion molecule expression in human epidermal neoplasms accompanies increased proliferation occurring with immortalization and tumor progression. Cancer Res 55:5434–5444

    PubMed  Google Scholar 

  21. Tawil NJ, Gowri V, Djoneidi M et al (1996) Integrin alpha3beta1 can promote adhesion and spreading of metastatic breast carcinoma cells on the lymph node stroma. Int J Cancer 66:703–710

    Article  PubMed  CAS  Google Scholar 

  22. Schumacher D, Schaumburg-Lever G (1996) Ultrastructural localization of alpha-3 integrin subunit in malignant melanoma and adjacent epidermis. J Cutan Pathol 26:321–326

    Article  Google Scholar 

  23. Kishima H, Shimizu K, Tamura K et al (1999) Monoclonal antibody ONS-M21 recognizes integrin alpha3 in gliomas and medulloblastomas. Br J Cancer 79:333–339

    PubMed  CAS  Google Scholar 

  24. Kreidberg JA (2000) Functions of alpha3beta1 integrin. Curr Opin Cell Biol 12:548–553

    Article  PubMed  CAS  Google Scholar 

  25. Tsuji T, Kawada Y, Kai-Murozono M et al (2002) Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3). Clin Exp Metastasis 19:127–134

    Article  PubMed  CAS  Google Scholar 

  26. Fukushima Y, Ohnishi T, Arita N et al (1998) Integrin alpha3beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int J Cancer 76:63–72

    Article  PubMed  CAS  Google Scholar 

  27. Hosono J, Narita T, Kimura N et al (1998) Involvement of adhesion molecules in metastasis of SW1990, human pancreatic cancer cells. J Surg Oncol 67:77–84

    Article  PubMed  CAS  Google Scholar 

  28. Gangopadhyay A, Lazure DA, Thomas P et al (1998) Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 16:703–712

    Article  PubMed  CAS  Google Scholar 

  29. Ziprin P, Ridgway PF, Pfistermuller KL et al (2003) ICAM-1 mediated tumor-mesothelial cell adhesion is modulated by IL-6 and TNF-alpha: a potential mechanism by which surgical trauma increases peritoneal metastases. Cell Commun Adhes 10:141–154

    Article  PubMed  CAS  Google Scholar 

  30. Khashayar L, Dean JA, Theodore O et al (1999) CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol 154:1525–1537

    Google Scholar 

  31. Nelson AR, Fingleton B, Rothenberg ML et al (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  32. Sier CF, Kubben FJ, Ganesh S et al (1996) Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer 74:413–417

    PubMed  CAS  Google Scholar 

  33. Kuniyasu H, Troncoso P, Johnston D et al (2000) Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin Cancer Res 6:2295–2308

    PubMed  CAS  Google Scholar 

  34. Marti HP, McNeil L, Davies M et al (1993) Homology cloning of rat 72 kDa type IV collagenase: cytokine and second-messenger inducibility in glomerular mesangial cells. Biochem J 291:441–446

    PubMed  CAS  Google Scholar 

  35. Marti HP, Lee L, Kashgarian M et al (1994) Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase. Am J Pathol 144:82–94

    PubMed  CAS  Google Scholar 

  36. Pulyaeva H, Bueno J, Polette M et al (1997) MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 15:111–120

    Article  PubMed  CAS  Google Scholar 

  37. Wang H, Keiser JA (2000) Hepatocyte growth factor enhances MMP activity in human endothelial cells. Biochem Biophys Res Commun 272:900–905

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi M, Tsunoda T, Seiki M et al (2002) Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21:5861–5867

    Article  PubMed  CAS  Google Scholar 

  39. Brabletz T, Jung A, Dag S et al (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155:1033–1038

    PubMed  CAS  Google Scholar 

  40. Crawford HC, Fingleton BM, Rudolph-Owen LA et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891

    Article  PubMed  CAS  Google Scholar 

  41. Crawford HC, Fingleton B, Gustavson MD et al (2001) The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol Cell Biol 21:1370–1383

    Article  PubMed  CAS  Google Scholar 

  42. Mann B, Gelos M, Siedow A et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96:1603–1608

    Article  PubMed  CAS  Google Scholar 

  43. Wielenga VJ, Smits R, Korinek V et al (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154:515–523

    PubMed  CAS  Google Scholar 

  44. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  45. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  46. Roose J, Huls G, van Beest M et al (1999) Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 285:1923–1926

    Article  PubMed  CAS  Google Scholar 

  47. Gradl D, Kuhl M, Wedlich D et al (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19:5576–5587

    PubMed  CAS  Google Scholar 

  48. Vallin J, Thuret R, Giacomello E et al (2001) Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta-catenin signaling. J Biol Chem 276:30350–30358

    Article  PubMed  CAS  Google Scholar 

  49. Hlubek F, Jung A, Kotzor N et al (2001) Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 61:8089–8093

    PubMed  CAS  Google Scholar 

  50. Polette M, Gilles C, Nawrocki-Raby B et al (2005) Membrane-type 1 matrix metalloproteinase expression is regulated by zonula occludens-1 in human breast cancer cells. Cancer Res 65:7691–7698

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kajiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terauchi, M., Kajiyama, H., Yamashita, M. et al. Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma. Clin Exp Metastasis 24, 329–339 (2007). https://doi.org/10.1007/s10585-007-9070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9070-1

Keywords

Navigation