Clinical & Experimental Metastasis

, Volume 22, Issue 1, pp 47–59 | Cite as

Syngeneic mouse mammary carcinoma cell lines: Two closely related cell lines with divergent metastatic behavior

  • Alexander D. Borowsky
  • Ruria Namba
  • Lawrence J.T. Young
  • Kent W. Hunter
  • J. Graeme Hodgson
  • Clifford G. Tepper
  • Erik T. McGoldrick
  • William J. Muller
  • Robert D. Cardiff
  • Jeffrey P. Gregg
Article

Abstract

Two cell lines, Met-1fvb2 and DB-7fvb2, with different metastatic potential, were derived from mammary carcinomas in FVB/N-Tg(MMTV-PyVmT) and FVB/N-Tg(MMTV-PyVmTY315F/Y322F) mice, transplanted into syngeneic FVB/N hosts and characterized. The lines maintain a stable morphological and biological phenotype after multiple rounds of in vitro culture and in vivo transplantation. The Met-1fvb2 line derived from a FVB/N-Tg(MMTV-PyVmT) tumor exhibits invasive growth and 100% metastases when transplanted into the females FVB/N mammary fat pad. The DB-7fvb2 line derived from the FVB/N-Tg(MMTV-PyVmTY315F/Y322F) with a “double base” modification at Y315F/Y322F exhibits more rapid growth when transplanted into the mammary fat pad, but a lower rate of metastasis (17%). The Met1fvb2 cells show high activation of AKT, while DB-7fvb2 cells show very low levels of AKT activation. The DNA content and gene expression levels of both cell lines are stable over multiple generations. Therefore, these two cell lines provide a stable, reproducible resource for the study of metastasis modulators, AKT molecular pathway interactions, and gene target and marker discovery.

Keywords

Akt breast breast carcinoma cell line metastasis comparative genomic hybridization ERBB2 gene expression analysis LY294002 mammary fat pad mouse mammary tumor virus long terminal repeat oncogene orthotopic phosphatidylinositol 3 kinase polyoma middle T pulmonary metastasis Sept9 Spp1 osteopontin Opn syngeneic transgenic tumor transplant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal, A, Tiwari, RC, Murray, T 2004Cancer statistics, 2004CA Cancer J Clin54829PubMedGoogle Scholar
  2. 2.
    Cardiff, RD, Anver, MR, Gusterson, BA,  et al. 2000The mammary pathology of genetically engineered mice: The consensus report and recommendations from the Annapolis meetingOncogene1996888CrossRefPubMedGoogle Scholar
  3. 3.
    Guy, CT, Cardiff, RD, Muller, WJ 1992Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic diseaseMol Cell Biol1295461PubMedGoogle Scholar
  4. 4.
    Lin, EY, Jones, JG, Li, P,  et al. 2003Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseasesAm J Pathol163211326PubMedGoogle Scholar
  5. 5.
    Maglione, JE, Moghanaki, D, Young, LJ,  et al. 2001Transgenic polyoma middle-T mice model premalignant mammary diseaseCancer Res618298305PubMedGoogle Scholar
  6. 6.
    Baribault, H, Wilson-Heiner, M, Muller, W,  et al. 1997Functional analysis of mouse keratin 8 in polyoma middle T-induced mammary gland tumoursTransgenic Res635967CrossRefPubMedGoogle Scholar
  7. 7.
    Graham, RA, Morris, JR, Cohen, EP,  et al. 2001Up-regulation of MUC1 in mammary tumors generated in a double-transgenic mouse expressing human MUC1 cDNA, under the control of 1.4-kb 5′ MUC1 promoter sequence and the middle T oncogene, expressed from the MMTV promoterInt J Cancer923827CrossRefPubMedGoogle Scholar
  8. 8.
    Li, Y, Welm, B, Podsypanina, K,  et al. 2003Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cellsProc Natl Acad Sci USA100158538CrossRefPubMedGoogle Scholar
  9. 9.
    Jessen, KA, Liu, SY, Tepper, CG,  et al. 2004Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontinBreast Cancer Res6R157R69CrossRefPubMedGoogle Scholar
  10. 10.
    Cozma, D, Lukes, L, Rouse, J,  et al. 2002A bioinformatics-based strategy identifies c-Myc and Cdc25A as candidates for the Apmt mammary tumor latency modifiersGenome Res1296975CrossRefPubMedGoogle Scholar
  11. 11.
    Williams, TM, Medina, F, Badano, I,  et al. 2004Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretionJ Biol Chem2795163046CrossRefPubMedGoogle Scholar
  12. 12.
    Basu, GD, Pathangey, LB, Tinder, TL,  et al. 2004Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancerMol Cancer Res263242PubMedGoogle Scholar
  13. 13.
    Le Voyer, T, Lu, Z, Babb, J,  et al. 2000An epistatic interaction controls the latency of a transgene-induced mammary tumorMamm Genome118839CrossRefPubMedGoogle Scholar
  14. 14.
    Webster, MA, Hutchinson, JN, Rauh, MJ,  et al. 1998Requirement for both Shc and phosphatidylinositol 3’ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesisMol Cell Biol18234459PubMedGoogle Scholar
  15. 15.
    Hutchinson, J, Jin, J, Cardiff, RD,  et al. 2001Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progressionMol Cell Biol21220312CrossRefPubMedGoogle Scholar
  16. 16.
    Cheung, AT, Young, LJ, Chen, PC,  et al. 1997Microcirculation and metastasis in a new mouse mammary tumor model systemInt J Oncol116977Google Scholar
  17. 17.
    Friedman, SL, Roll, FJ 1987Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with StractanAnal Biochem16120718CrossRefPubMedGoogle Scholar
  18. 18.
    Vlahos, CJ, Matter, WF, Hui, KY,  et al. 1994A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002)J Biol Chem26952418Google Scholar
  19. 19.
    Namba, R, Maglione, JE, Young, LJ,  et al. 2004Molecular characterization of the transition to malignancy in a genetically engineered mouse-based model of ductal carcinoma in situMol Cancer Res245363PubMedGoogle Scholar
  20. 20.
    Li, C, Wong, WH 2001Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detectionProc Natl Acad Sci USA98316CrossRefPubMedGoogle Scholar
  21. 21.
    Hodgson, G, Hager, JH, Volik, S,  et al. 2001Genome scanning with array CGH delineates regional alterations in mouse islet carcinomasNat Genet2945964PubMedGoogle Scholar
  22. 22.
    Hager, JH, Hodgson, JG, Fridlyand, J,  et al. 2004Oncogene expression and genetic background influence the frequency of DNA copy number abnormalities in mouse pancreatic islet cell carcinomasCancer Res64240610PubMedGoogle Scholar
  23. 23.
    Rosner, A, Miyoshi, K, Landesman-Bollag, E,  et al. 2002Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumorsAm J Pathol161108797PubMedGoogle Scholar
  24. 24.
    Montagna, C, Lyu, MS, Hunter, K,  et al. 2003The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell linesCancer Res63217987PubMedGoogle Scholar
  25. 25.
    Shi, YP, Mohapatra, G, Miller, J,  et al. 1997FISH probes for mouse chromosome identificationGenomics45427CrossRefPubMedGoogle Scholar
  26. 26.
    Man, AK, Young, LJ, Tynan, JA,  et al. 2003Ets2-dependent stromal regulation of mouse mammary tumorsMol Cell Biol23861425CrossRefPubMedGoogle Scholar
  27. 27.
    Weiss, RH, Marshall, D, Howard, L,  et al. 2003Suppression of breast cancer growth and angiogenesis by an antisense oligodeoxynucleotide to p21(Waf1/Cip1)Cancer Lett1893948CrossRefPubMedGoogle Scholar
  28. 28.
    Bourguignon, LY, Gunja-Smith, Z, Iida, N,  et al. 1998CD44v(3,8–10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cellsJ Cell Physiol17620615CrossRefPubMedGoogle Scholar
  29. 29.
    Lau, DH, Xue, L, Young, LJ,  et al. 1999Paclitaxel (Taxol): An inhibitor of angiogenesis in a highly vascularized transgenic breast cancerCancer Biother Radiopharm14316PubMedGoogle Scholar
  30. 30.
    Webster, MA, Muller, WJ 1994Mammary tumorigenesis and metastasis in transgenic miceSemin Cancer Biol56976PubMedGoogle Scholar
  31. 31.
    Qiu, TH, Chandramouli, GV, Hunter, KW,  et al. 2004Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: Correlation to human diseaseCancer Res64597381PubMedGoogle Scholar
  32. 32.
    Slamon, DJ, Godolphin, W, Jones, LA,  et al. 1989Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancerScience24470712PubMedGoogle Scholar
  33. 33.
    Dilworth, SM 2002Polyoma virus middle T antigen and its role in identifying cancer-related moleculesNat Rev Cancer29516CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang, G, He, B, Weber, GF 2003Growth factor signaling induces metastasis genes in transformed cells: Molecular connection between Akt kinase and osteopontin in breast cancerMol Cell Biol23650719CrossRefPubMedGoogle Scholar
  35. 35.
    Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis 2004.Google Scholar
  36. 36.
    Kerbel, RS 1998What is the optimal rodent model for anti-tumor drug testing?Cancer Metastasis Rev173014CrossRefPubMedGoogle Scholar
  37. 37.
    Maglione, JE, McGoldrick, ET, Young, Lj,  et al. 2004Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: Single origin, divergent evolution, and multiple outcomesMol Cancer Ther394153PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Alexander D. Borowsky
    • 1
    • 2
  • Ruria Namba
    • 1
  • Lawrence J.T. Young
    • 1
    • 2
  • Kent W. Hunter
    • 3
  • J. Graeme Hodgson
    • 4
  • Clifford G. Tepper
    • 1
    • 5
  • Erik T. McGoldrick
    • 1
    • 2
  • William J. Muller
    • 6
  • Robert D. Cardiff
    • 1
    • 2
  • Jeffrey P. Gregg
    • 1
  1. 1.Department of Medical Pathology and Laboratory MedicineUC Davis School of MedicineSacramentoUSA
  2. 2.Center for Comparative Medicine, UC Davis DavisUSA
  3. 3.Laboratory of Population Genetics, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaUSA
  4. 4.Department of Neurological SurgeryUC San FranciscoSan FranciscoUSA
  5. 5.Department of Biochemistry and Molecular MedicineUC Davis School of MedicineSacramentoUSA
  6. 6.Molecular Oncology GroupMcGill University, Royal Victoria HospitalMontréalCanada

Personalised recommendations