Skip to main content

Advertisement

Log in

Contemporary climate change velocity for near-surface temperatures over India

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Velocity of climate change (VoCC), also known as climate velocity, has been widely used as a climate change metric to inform the past and projected impacts of climate change on biodiversity globally. It is a generalized climate-landscape metric that does not involve any biological assumptions and is beneficial for regions with a lack of extensive species presence/absence data. In the current study, the contemporary (1951–2018) climate velocity for India at the annual and seasonal timescales has been assessed using observational and reanalysis datasets for mean near-surface temperature. The associated coverage uncertainty and influence of the resolutions of the datasets have been identified and an attempt has been made to address them. The central, north-western, and southern peninsular regions, along with some parts of the Indo-Gangetic plains, were identified as having experienced the highest annual climate velocities, in the range of 3–8 km/year in the last five decades. The velocities in the post-monsoon (October and November) were found to be the highest (> 4 km/year) as compared to the other seasons owing to the higher temporal, lower spatial gradients and regional dynamics. Finer resolution dataset presents a more realistic estimate of climate velocities owing to better representation of local topographical features and associated microclimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The CRU and ERA-5 datasets analyzed during the current study are available in the CRU: Data repository (link: https://crudata.uea.ac.uk/cru/data/hrg/) and the Copernicus Climate Data Store repository (link: https://cds.climate.copernicus.eu/cdsapp#!/home), respectively.

References

  • ADVE N (2014) Moving home: global warming and the shifts in species’ range in India. Econ Polit Wkly 49(39):34–38. http://www.jstor.org/stable/24480732

  • Bellard C, Leclerc C, Courchamp F (2014) Sea level rise and insular hotspots. Glob Ecol Biogeogr 23:203–212. https://doi.org/10.1111/geb.12093

    Article  Google Scholar 

  • Brito-Morales I, Molinos JG, Schoeman DS, Burrows MT, Poloczanska ES, Brown CJ, Ferrier S, Harwood TD, Klein CJ, McDonald-Madden E, Moore PJ, Pandolfi JM, Watson JEM, Wenger AS, Richardson AJ (2018) Climate velocity can inform conservation in a warming world. Trends Ecol Evol 33(6):441–457. https://doi.org/10.1016/j.tree.2018.03.009

  • Brito-Morales I, Schoeman DS, Molinos JG, Burrows MT, Klein CJ, Arafeh-Dalmau N, Kaschner K, Garilao C, Kesner-Reyes K, Richardson AJ (2020) Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat Clim Chang 10(6):576–581. https://doi.org/10.1038/s41558-020-0773-5

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334(6056):652–655. https://doi.org/10.1126/science.1210288

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, … Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493):492–495. https://doi.org/10.1038/nature12976

  • Carroll C, Roberts DR, Michalak JL, Lawler JJ, Nielsen SE, Stralberg D, Hamann A, Mcrae BH, Wang T (2017) Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob Change Biol 23(11):4508–4520. https://doi.org/10.1111/gcb.13679

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432

    Article  Google Scholar 

  • Chitale VS, Behera MD (2012) Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate? Curr Sci 102(8):1126–1135

    Google Scholar 

  • Cook BI, Puma MJ, Krakauer NY (2011) Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim Dyn 37:1587–1600. https://doi.org/10.1007/s00382-010-0932-x

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q.J.R. Meteorol Soc 140:1935–1944. https://doi.org/10.1002/qj.2297

    Article  Google Scholar 

  • Dahal N, Lamichhaney S, Kumar S (2021) Climate change impacts on Himalayan biodiversity: evidence-based perception and current approaches to evaluate threats under climate change. J Indian Inst Sci 101:195–210. https://doi.org/10.1007/s41745-021-00237-1

    Article  Google Scholar 

  • Dash SK, Hunt JCR (2007) Variability of climate change in India. Curr Sci 93(6):782–788

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58. https://doi.org/10.1126/science.1200303

    Article  Google Scholar 

  • Dileepkumar R, Achutarao K, Arulalan T (2018) Human influence on sub-regional surface air temperature change over India. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-27185-8

    Article  Google Scholar 

  • Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK (2013) The climate velocity of the contiguous United States during the 20th century. Glob Change Biol 19(1):241–251. https://doi.org/10.1111/gcb.12026

    Article  Google Scholar 

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45(4):1029–1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x

    Article  Google Scholar 

  • Dunn RJH, Donat MG, Alexander LV (2014) Investigating uncertainties in global gridded datasets of climate extremes. Clim past 10:2171–2199. https://doi.org/10.5194/cp-10-2171-2014

    Article  Google Scholar 

  • Fogarty HE, Burrows MT, Pecl GT, Robinson LM, Poloczanska ES (2017) Are fish outside their usual ranges early indicators of climate-driven range shifts? Glob Change Biol 23(5):2047–2057. https://doi.org/10.1111/gcb.13635

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction (Ecology, Biodiversity and Conservation). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511810602

  • Fuentes-Castillo T, Hernández HJ, Pliscoff P (2020) Hotspots and ecoregion vulnerability driven by climate change velocity in Southern South America. Reg Environ Change 20(1). https://doi.org/10.1007/s10113-020-01595-9

  • Gao L, Bernhardt M, Schulz K (2012) Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16:4661–4673. https://doi.org/10.5194/hess-16-4661-2012

  • Gao L, Bernhardt M, Schulz K, Chen X (2017) Elevation correction of ERA-Interim temperature data in the Tibetan Plateau. Int J Climatol 37(9):3540–3552. https://doi.org/10.1002/joc.4935

    Article  Google Scholar 

  • Garcia RA, Cabeza M, Rahbek C, Araújo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344(6183). https://doi.org/10.1126/science.1247579

  • García Molinos J, Schoeman DS, Brown CJ, Burrows MT (2019) VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol Evol 10(12):2195–2202. https://doi.org/10.1111/2041-210X.13295

    Article  Google Scholar 

  • Hamann A, Roberts DR, Barber QE, Carroll C, Nielsen SE (2015) Velocity of climate change algorithms for guiding conservation and management. Glob Change Biol 21(2):997–1004. https://doi.org/10.1111/gcb.12736

    Article  Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):1–18. https://doi.org/10.1038/s41597-020-0453-3

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hoffmann S, Irl SDH, Beierkuhnlein C (2019) Predicted climate shifts within terrestrial protected areas worldwide. Nat Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-12603-w

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland pp 151

  • Jarnevich CS, Stohlgren TJ, Kumar S, Morisette JT, Holcombe TR (2015) Caveats for correlative species distribution modeling. In Ecol Inf 29(1):6–15. https://doi.org/10.1016/j.ecoinf.2015.06.007

    Article  Google Scholar 

  • Kanagaraj R, Araujo MB, Barman R, Davidar P, De R, Digal DK, Gopi GV, Johnsingh AJT, Kakati K, Kramer‐Schadt S, Lamichhane BR, Lyngdoh S, Madhusudan MD, Najar MUI, Parida J, Pradhan NMB, Puyravaud J‐P, Raghunath R, Abdul Rahim PP, Selvan KM, Subedi N, Trabucco A, Udayraj S, Wiegand T, Williams AC, Goyal SP (2019) Predicting range shifts of Asian elephants under global change. Divers Distrib 25(5):822–838. https://doi.org/10.1111/ddi.12898

  • Kaushik G, Khalid MA (2011) Climate change impact on forestry in India. In: Lichtfouse E (eds) Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Sustainable Agriculture Reviews, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0186-1_11

  • Kosanic A, Kavcic I, van Kleunen M, Harrison S (2019) Climate change and climate change velocity analysis across Germany. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-38720-6

    Article  Google Scholar 

  • Kothawale DR, Kumar KK, Srinivasan G (2012) Spatial asymmetry of temperature trends over India and possible role of aerosols. Theoret Appl Climatol 110(1–2):263–280. https://doi.org/10.1007/s00704-012-0628-8

    Article  Google Scholar 

  • Kumar Pandey A, Rawat S et al (2021) Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15624-5

    Article  Google Scholar 

  • Kumar N, Jaswal AK, Mohapatra M, Kore PA (2017) Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969–2012). Theor Appl Climatol 129(3):1227–1239

  • Loarie S, Duffy P, Hamilton H, Asner G, Field C, Ackerly D (2009) The velocity of climate change. Nature 462:1052–1055. https://doi.org/10.1038/nature08649

    Article  Google Scholar 

  • Lopresti A, Charland A, Woodard D, Randerson J, Diffenbaugh NS, Davis SJ (2015) Rate and velocity of climate change caused by cumulative carbon emissions. Environ Res Lett 10(9). https://doi.org/10.1088/1748-9326/10/9/095001

  • Mahto SS, Mishra V (2019) Does ERA5 outperform other reanalysis products for hydrologic applications in India? J Geophys Res: Atmos 124:9423–9441. https://doi.org/10.1029/2019JD031155

    Article  Google Scholar 

  • Malakoutikhah S, Fakheran S, Hemami MR, Tarkesh M, Senn J (2018) Altitudinal heterogeneity and vulnerability assessment of protected area network for climate change adaptation planning in central Iran. Appl Geogr 92(February):94–103. https://doi.org/10.1016/j.apgeog.2018.02.006

    Article  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20(2):538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x

    Article  Google Scholar 

  • Mantyka-pringle CS, Martin TG, Rhodes JR (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Change Biol 18(4):1239–1252. https://doi.org/10.1111/j.1365-2486.2011.02593.x

    Article  Google Scholar 

  • Midgley GF, Davies ID, Albert CH, Altwegg R, Hannah L, Hughes GO, O’Halloran LR, Seo C, Thorne JH, Thuiller W (2010) BioMove — an integrated platform simulating the dynamic response of species to environmental change. Ecography 33(3):612–616. https://doi.org/10.1111/j.1600-0587.2009.06000.x

    Article  Google Scholar 

  • Mishra V, Ambika AK, Asoka A et al (2020) Moist heat stress extremes in India enhanced by irrigation. Nat Geosci 13:722–728. https://doi.org/10.1038/s41561-020-00650-8

    Article  Google Scholar 

  • Mittermeier RA, Robles GP, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited. Garza Garcia N.L. Mexico: CEMEX

  • Molinos J, Halpern B, Schoeman D, Brown C, Kiessling W, Moore P, Pandolfi J, Poloczanska E, Richardson A, Burrows M (2015) Climate velocity and the future global redistribution of marine. Nat Climate Change Adv Online Publ. https://doi.org/10.1038/nclimate2769

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. https://doi.org/10.1038/35002501 (PMID: 10706275)

    Article  Google Scholar 

  • Ojha N, Sharma A, Kumar M et al (2020) On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci Rep 10:5862. https://doi.org/10.1038/s41598-020-62710-8

    Article  Google Scholar 

  • Ordonez A, Williams JW (2013) Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim Change 119(3–4):659–675. https://doi.org/10.1007/s10584-013-0752-1

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, HuntleyB, Bickford D, Carr, JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE., … Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Change 5(3):215–225.https://doi.org/10.1038/nclimate2448

  • Parks SA, Carroll C, Dobrowski SZ, Allred BW (2020) Human land uses reduce climate connectivity across North America. Glob Change Biol 26(5):2944–2955. https://doi.org/10.1111/gcb.15009

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. https://doi.org/10.1038/nature01286

    Article  Google Scholar 

  • Patel JG, Murthy TVR, Singh TS, Panigrahy S, Panigrahy S, Shankar Ray S, Parihar JS (2009) Analysis of the distribution pattern of wetlands in India in relation to climate change. In Proceedings of the workshop on impact of climate change on agriculture. Ahmedabad, India (pp. 17–18)

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark T D, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, … Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332). https://doi.org/10.1126/science.aai9214

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3(10):919–925. https://doi.org/10.1038/nclimate1958

  • Qiu C, Shen Z, Peng P, Mao L, Zhang X (2014) How does contemporary climate versus climate change velocity affect endemic plant species richness in China? Chin Sci Bull 59(34):4660–4667. https://doi.org/10.1007/s11434-014-0640-8

    Article  Google Scholar 

  • Ravindranath, N. H., Joshi, N. V., Sukumar, R., & Saxena, A. (2006). Impact of climate change on forests in India. Current science, 354–361.

  • Rodger, W. A., Panwar, H. S., & Mathur, V. B. (2000). Biogeographical classifications of India. Wildlife protected area network in India: a review.

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    Article  Google Scholar 

  • Ross RS, Krishnamurti TN, Pattnaik S et al (2018) Decadal surface temperature trends in India based on a new high-resolution data set. Sci Rep 8:7452. https://doi.org/10.1038/s41598-018

    Article  Google Scholar 

  • Saharwardi MS, Kumar P (2022) Future drought changes and associated uncertainty over the homogenous regions of India: a multimodel approach. Int J Climatol 42(1):652–670. https://doi.org/10.1002/joc.7265

    Article  Google Scholar 

  • Sales L, Ribeiro BR, Chapman CA, Loyola R (2020) Multiple dimensions of climate change on the distribution of Amazon primates. Perspect Ecol Conserv 18(2):83–90. https://doi.org/10.1016/j.pecon.2020.03.001

    Article  Google Scholar 

  • Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science 334(6056):660–664. https://doi.org/10.1126/science.1210173

    Article  Google Scholar 

  • Singh, J S & Chaturvedi, Ravi. (2017). Diversity of ecosystem types in India: a review. proceedings of the Indian National Science Academy. 83. https://doi.org/10.16943/ptinsa/2017/41287.

  • Shah RDT, Shah DN, Domisch S (2012) Range shifts of a relict Himalayan dragonfly in the Hindu Kush Himalayan region under climate change scenarios. International Journal of Odonatology 15(3):209–222. https://doi.org/10.1080/13887890.2012.697399

    Article  Google Scholar 

  • Shah, R., & Mishra, V. (2014). Evaluation of the reanalysis products for the monsoon season droughts in India. J Hydrometeorol 15(4):1575–1591. Retrieved Feb 21, 2022, from https://journals.ametsoc.org/view/journals/hydr/15/4/jhm-d-13-0103_1.xml

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7(5):e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  Google Scholar 

  • Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos Sci Lett 10(4):249–254

  • Srivastava AK, Kothawale DR, Rajeevan MN (2017) Variability and long-term changes in surface air temperatures over the Indian subcontinent. Springer Geology 17–35. https://doi.org/10.1007/978-981-10-2531-0_2

  • Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett N, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE (2015) Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett 18(9):944–953. https://doi.org/10.1111/ele.12474

  • Sukumar R, Suresh HS, Ramesh R (1995) Climate change and its impact on tropical montane ecosystems in southern India. J Biogeogr 22(2–3):533–536. https://doi.org/10.2307/2845951

    Article  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8(2):e57103. https://doi.org/10.1371/journal.pone.0057103

    Article  Google Scholar 

  • Thomas CDAC, Green RE, Bakkenes M, Beaumont LJ, Clooingham YC, Erasmus BFNN, Siquieira MF De, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld AS Van, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE, Cameron A, … Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148. https://doi.org/10.1038/nature02121

  • Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe’er G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, Gonzalez A, Hellmann JJ, Holt RD, Huth A, Johst K, Krug CB, Leadley PW, Palmer SCF, Pantel JH, … Travis JMJ (2016) Improving the forecast for biodiversity under climate change. Science 353(6304). https://doi.org/10.1126/science.aad8466

  • Vivekanandan E, Gomathy S, Thirumilu P, Meiyappan MM, Balakumar SK (2009) Trophic level of fishes occurring along the Indian coast. J Mar Biol Assoc India 51(1):44–51

    Google Scholar 

  • Waldock C, Dornelas M, Bates AE (2018) Temperature-driven biodiversity change: disentangling space and time. Bioscience 68(11):873–884. https://doi.org/10.1093/biosci/biy096

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104(14):5738–5742. https://doi.org/10.1073/pnas.0606292104

    Article  Google Scholar 

  • Woolway RI, Maberly SC (2020) Climate velocity in inland standing waters. Nat Clim Chang 10(12):1124–1129. https://doi.org/10.1038/s41558-020-0889-7

    Article  Google Scholar 

  • Ye X, Yu X, Yu C, Tayibazhaer A, Xu F, Skidmore AK, Wang T (2018) Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci Total Environ 612(620):775–787. https://doi.org/10.1016/j.scitotenv.2017.08.191

    Article  Google Scholar 

  • Zheng B, Chenu K, Chapman SC (2016) Velocity of temperature and flowering time in wheat — assisting breeders to keep pace with climate change. Glob Change Biol 22(2):921–933. https://doi.org/10.1111/gcb.13118

    Article  Google Scholar 

  • Zumwald M, Knüsel B, Baumberger C, Hirsch Hadorn G, Bresch DN, Knutti R (2020) Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. Wiley Interdiscip Rev: Climate Change 11(5):1–19. https://doi.org/10.1002/wcc.654

    Article  Google Scholar 

Download references

Funding

Fellowship was given to D. S. by University Grants Commission (UGC), Government of India, JRF Fellowship no. 3724/(OBC) (NET-NOV.2017), during the initial stages of the study. Scholarship by the Intergovernmental Panel on Climate Change (IPCC) and the financial support of the AXA Research Fund were provided to D. S. during the later stage of this study. The contents of this paper are solely the liability of the lead author and under no circumstances may be considered as a reflection of the position of the AXA Research Fund and/or the IPCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2829 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, D., Kumar, P. & Saharwardi, M.S. Contemporary climate change velocity for near-surface temperatures over India. Climatic Change 173, 24 (2022). https://doi.org/10.1007/s10584-022-03418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-022-03418-8

Keywords

Navigation