Skip to main content

Advertisement

Log in

CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The outputs of the Earth system models (ESM) provided by the sixth phase of the Coupled Models Intercomparison Project (CMIP6) reflect the current state of scientific knowledge on climate change and make it possible not only to draw conclusions about the adverse consequences of climate change but also to evaluate the certainty of such conclusions. This study is aimed to check if the CMIP6 model projections of mean annual air temperature (MAAT) allow us to make a robust conclusion about the possibility of adverse consequences of climate change in the northern part of Western Siberia. With this purpose in mind, we construct the weighted multi-model ensemble and find that it reproduces with 30% accuracy the observation-based MAAT anomalies over this region. Then, we use this weighted multi-model ensemble to predict MAAT changes and find that under the SSP5-8.5 scenario, MAAT will exceed 0 °C almost everywhere in the North of Western Siberia by the end of this century. Since permafrost occurs sporadically over the territories where MAAT is above − 2 °C, this result suggests that permafrost will not persist in Western Siberia under the SSP5-8.5 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The climate model outputs were obtained from https://esgf-node.llnl.gov/search/cmip6/. The 20CRV3 data were obtained from ftp://ftp2.psl.noaa.gov/Datasets/20thC_ReanV3/Monthlies/2mSI-MO/air.2m.mon.mean.nc (support for the Twentieth Century Reanalysis Project version 3 dataset is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), by the National Oceanic and Atmospheric Administration Climate Program Office, and by the NOAA Physical Sciences Laboratory). The data that underly figures and the code used in calculations are available from GAA on request.

Code availability

The python code developed to produce the data that underly figures presented in this paper is available from G.A.A. This code calls climate data operators (Schulzweida 2019), which are available from https://code.mpimet.mpg.de/projects/cdo/, and the function providing a trust region algorithm for constrained minimization of multivariate scalar functions, which is available from the SciPy library, https://scipy.org/scipylib/index.html.

References

  • Adaev V (2018) Smoke over taiga and tundra: fire in the culture of Northern peoples of Western Siberia as a means of environmental management. Bulletin of Archeology, Anthropology and Ethnography 2(41):138–147. https://doi.org/10.20874/2071-0437-2018-41-2-138-147

    Article  Google Scholar 

  • Anisimov OA, Nelson FE (1990) Application of mathematical models to investigate the interaction between the climate and permafrost. Sov Meteorol Hydrol 10:8–13

    Google Scholar 

  • Arzhanov MM, Malakhova VV, Mokhov II (2020) Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost. Permafrost Periglac Process 31:487–496. https://doi.org/10.1002/ppp.2074

    Article  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J et al (2019) Permafrost is warming at a global scale. Nat Commun 10:264. https://doi.org/10.1038/s41467-018-08240-4

    Article  Google Scholar 

  • Boucher O, Servonnat J, Albright AL, et al. (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems e2019MS002010

  • Burgess MM, Smith SL (2000) Shallow ground temperatures. The Physical Environment of the Mackenzie Valley, Northwest Territories: a Base Line for the Assessment of Environmental Change 547:89–103

    Google Scholar 

  • Chadburn SE, Burke EJ, Cox PM et al (2017) An observation-based constraint on permafrost loss as a function of global warming. Nat Clim Chang 7:340–344. https://doi.org/10.1038/nclimate3262

    Article  Google Scholar 

  • Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., ... & Worley, S. J. (2011). The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137(654), 1-28.

  • Demchenko PF, Velichko AA, Eliseev AV, Mokhov II, Nechaev VP (2002) Dependence of permafrost conditions on global warming: comparison of models, scenarios, and paleoclimatic reconstructions. Izvestia Atmos Ocean Phys 38(2):143–151

    Google Scholar 

  • Eyring V, Bony S, Meehl GA et al (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9:1937–1958

    Article  Google Scholar 

  • Ezhova EE, Orlov D, Suhonen E, Kaverin D, Mahura A, Gennadinik V, Kukkonen I, Drozdov D, Lappalainen HK, Melnikov V, Petäjä T, Kerminen V-M, Zilitinkevich S, Malkhazova SM, Christensen TR, Kulmala M (2021) Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia. EcoHealth 18:217–228. https://doi.org/10.1007/s10393-021-01549-5

    Article  Google Scholar 

  • Fox-Kemper B, HT Hewitt, C Xiao, G Aðalgeirsdóttir, SS Drijfhout, TL Edwards, NR Golledge, M Hemer, RE Kopp, G Krinner, A Mix, D Notz, S Nowicki, IS Nurhati, L Ruiz, J-B Sallée, ABA Slangen, Y Yu (2021) Ocean, cryosphere and sea level change. In: Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press. (Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_09.pdf, last accessed 2021–10–12)

  • Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, van den Berg M, Feng L, Klein D, Calvin K, Doelman JC, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475. https://doi.org/10.5194/gmd-12-1443-2019

    Article  Google Scholar 

  • Guo D, Wang H (2016) CMIP5 permafrost degradation projection: a comparison among different regions. J Geophys Res Atmos 121:4499–4517. https://doi.org/10.1002/2015JD024108

    Article  Google Scholar 

  • Hinkel KM, Hurd JK Jr (2006) Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA. Arct Antarct Alp Res 38(4):530–539

    Article  Google Scholar 

  • Hjort J, Karjalainen O, Aalto J et al (2018) Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun 9:5147. https://doi.org/10.1038/s41467-018-07557-4

    Article  Google Scholar 

  • Istomin KV, Habeck JO (2016) Permafrost and indigenous land use in the northern Urals: Komi and Nenets reindeer husbandry. Polar Sci 10:278–287. https://doi.org/10.1016/j.polar.2016.07.002

    Article  Google Scholar 

  • Kattsov VM, Shkolnik IM, Efimov SV (2017) Climate change projections in Russian regions: the detailing in physical and probability spaces. Russ Meteorol Hydrol 42(7):452–460. https://doi.org/10.3103/S1068373917070044

    Article  Google Scholar 

  • Korneva IA, Semenov SM (2016) Surface temperature response to variations in atmospheric albedo: estimating the radiation effect. Russ Meteorol Hydrol 41(5):307–311. https://doi.org/10.3103/S1068373916050010

    Article  Google Scholar 

  • Krupnik I (2000) Reindeer pastoralism in modern Siberia: research and survival in the time of crash. Polar Res 19:49–56

    Article  Google Scholar 

  • Lalee M, Nocedal J, Plantenga T (1998) On the implementation of an algorithm for large-scale equality constrained optimization. SIAM J Optim 8(3):682–706

    Article  Google Scholar 

  • Liskova EA, Egorova IY, Selyaninov YO, Razheva IV, Gladkova NA, Toropova NN, Zakharova OI, Burova OA, Surkova GV, Malkhazova SM, Korennoy FI, Iashin IV, Blokhin AA (2021) Reindeer anthrax in the Russian Arctic, 2016: climatic determinants of the outbreak and vaccination effectiveness. Frontiers in Veterinary Science 8:668420. https://doi.org/10.3389/fvets.2021.668420

    Article  Google Scholar 

  • Mauritsen T, Bader J, Becker T et al (2019) Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems 11:998–1038

    Article  Google Scholar 

  • Moskovchenko DV, Aref’ev SP, Moskovchenko MD, Yurtaev AA (2020) Spatiotemporal Analysis of Wildfires in the forest tundra of Western Siberia. Contemp Probl Ecol 13(2):193–203. https://doi.org/10.1134/S1995425520020092

    Article  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410(6831):889–890. https://doi.org/10.1038/35073746

    Article  Google Scholar 

  • Park H, Launiainen S, Konstantinov PY, Iijima Y, Fedorov AN (2018) Modeling the effect of moss cover on soil temperature and carbon fluxes at a tundra site in northeastern Siberia. J Geophys Res-Biogeo 123:3028–3044. https://doi.org/10.1029/2018JG004491

    Article  Google Scholar 

  • Peng X, Zhang T, Frauenfeld OW, Du R, Wei Q, Liang B (2020) Soil freeze depth variability across Eurasia during 1850–2100. Clim Change 158(3):531–549. https://doi.org/10.1007/s10584-019-02586-4

    Article  Google Scholar 

  • Porada P, Ekici A, Beer C (2016) Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 10:2291–2315. https://doi.org/10.5194/tc-10-2291-2016

    Article  Google Scholar 

  • Pokrovsky OS, Shirokova LS, Manasypov RM et al (2014) Thermokarst lakes of Western Siberia: a complex biogeochemical multidisciplinary approach. Int J Environ Stud 71:733–748. https://doi.org/10.1080/00207233.2014.942535

    Article  Google Scholar 

  • Romanovsky VE, AL Kholodov, SS Marchenko, NG Oberman, DS Drozdov, GV Malkova, NG Moskalenko, AA Vasiliev, DO Sergeev, and MN Zheleznyak (2008) Thermal state and fate of permafrost in Russia: first results of IPY. In: Ninth International Conference on Permafrost, Vol. 1 [Kane, D.L. and K.M. Hinkel (eds.)]. Proceedings of the Ninth International Conference on Permafrost, June 29 - July 3, 2008, Institute of Northern Engineering, University of Alaska, Fairbanks, AK, USA, pp.1511–1518.

  • Romanovsky V, K Isaksen, D Drozdov, O Anisimov, A Instanes, M Leibman, AD Mcguire, N Shiklomanov, S Smith, D Walker (2017) Changing permafrost and its impacts. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. pp. 65–102. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.

  • Schaphoff S, Reyer CPO, Schepaschenko D, Gerten D, Shvidenko A (2016) Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. For Ecol Manage 361:432–444. https://doi.org/10.1016/j.foreco.2015.11.043

    Article  Google Scholar 

  • Schulzweida U (2019) CDO User Guide (Version 1.9.8). 10.5281/zenodo.3539275

  • Shur YL, Jorgenson MT (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost Periglac Process 18:7–19. https://doi.org/10.1002/ppp.582

    Article  Google Scholar 

  • Slater AG, Lawrence DM (2013) Diagnosing present and future permafrost from climate models. J Clim 26:5608–5623. https://doi.org/10.1175/JCLI-D-12-00341.1

    Article  Google Scholar 

  • Slivinski LC, Compo GP, Sardeshmukh PD, Whitaker JS, McColl C, Allan RJ, ... & Wyszyński P (2021). An evaluation of the performance of the twentieth century reanalysis version 3. Journal of Climate, 34(4), 1417-1438. https://doi.org/10.1175/JCLI-D-20-0505.1

  • Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafrost Periglac Process 13(1):1–5

    Article  Google Scholar 

  • Stieglitz M, Déry SJ, Romanovsky VE, Osterkamp TE (2003) The role of snow cover in the warming of arctic permafrost. Geophys Res Lett 30(13):1721

    Article  Google Scholar 

  • Streletskiy DA, Suter LJ, Shiklomanov NI, Porfiriev BN, Eliseev DO (2019) Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 14:025003. https://doi.org/10.1088/1748-9326/aaf5e6

    Article  Google Scholar 

  • Suter L, Streletskiy D, Shiklomanov N (2019) Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geogr 42(4):267–286. https://doi.org/10.1080/1088937X.2019.1686082

    Article  Google Scholar 

  • Swart NC, Cole JN, Kharin VV et al (2019) The Canadian Earth System Model version 5 (CanESM5. 0.3). Geoscientific Model Development 12:4823–4873

    Article  Google Scholar 

  • Tao J, Koster RD, Reichle RH et al (2019) Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis. Cryosphere 13:2087–2110. https://doi.org/10.5194/tc-13-2087-2019

    Article  Google Scholar 

  • Tatebe H, Ogura T, Nitta T et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development 12:2727–2765

    Article  Google Scholar 

  • Vasiliev AA, Drozdov DS, Gravis AG, Malkova GV, Nyland KE, Streletskiy DA (2020) Permafrost degradation in the western Russian arctic. Environ Res Lett 15(4):045001. https://doi.org/10.1088/1748-9326/ab6f12

    Article  Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, ... & Van Mulbregt P (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.

  • Volodin E, Gritsun A (2018) Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth System Dynamics 9:1235–1242. https://doi.org/10.5194/esd-9-1235-2018

    Article  Google Scholar 

  • Walter Anthony K, Daanen R, Anthony P et al (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat Geosci 9:679–682. https://doi.org/10.1038/ngeo2795

    Article  Google Scholar 

  • Wild B, Andersson A, Bröder L et al (2019) Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc Natl Acad Sci USA 116:10280–10285. https://doi.org/10.1073/pnas.1811797116

    Article  Google Scholar 

  • Yu Q, Epstein HE, Engstrom R, et al. (2015) Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions. Environmental Research Letters 10:. https://doi.org/10.1088/1748-9326/10/12/124020

  • Yukimoto S, Kawai H, Koshiro T et al (2019) The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan Ser II 97:931–965. https://doi.org/10.2151/jmsj.2019-051

    Article  Google Scholar 

  • Zhu D, Ciais P, Krinner G, Maignan F, Puig AJ, Hugelius G (2019) Controls of soil organic matter on permafrost thermal and carbon dynamics. Nat Commun 10:3172. https://doi.org/10.1038/s41467-019-11103-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maxim Arzhanov and Irina Korneva for their comments on the early draft of the manuscript and anonymous reviewers for their helpful suggestions.

Funding

G.E.I. and V.A.G. acknowledge funding by the Ministry of Science and Higher Education of the Russian Federation (projects 0148-2019-0007 and 0148–2019-0009).

Author information

Authors and Affiliations

Authors

Contributions

The idea of the study was conceived by G.A.A., V.A.G., G.E.I., and A.A.R. G.A.A. did calculations and drafted the manuscript. G.E.I. revised the first draft. The second draft was revised by A.A.R. and V.A.G. All authors approved the final manuscript.

Corresponding author

Correspondence to Georgii A. Alexandrov.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 510 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, G.A., Ginzburg, V.A., Insarov, G.E. et al. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change 169, 42 (2021). https://doi.org/10.1007/s10584-021-03292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-021-03292-w

Keywords

Navigation