Abstract
Past studies have shown that the physiological effect of CO2 may be important for future climate change, yet many regional climate models and hydrological models used in impact studies do not simulate it. Here, the role the physiological effect of CO2 on the changes in the continental hydrological cycle over Europe in summer – when severe drying is projected – is assessed using a large ensemble of idealized climate simulations, and compared to the radiative impacts of CO2. As expected, the physiological effect of CO2 leads to a decrease in evapotranspiration. However, it generally does not lead to an increase in river flows or soil moisture as often expected, because it is also associated with a large decrease in precipitation. This decrease in precipitation is likely due to small warming and decrease in specific humidity caused by the physiologically driven decrease in evapotranspiration, which together lead to a large decrease in relative humidity. Important inter-model uncertainties, however, exist regarding the physiological impact of CO2 on the summer hydrological cycle over Europe.
Similar content being viewed by others
Data availability
The CMIP6 data used in this study can be freely downloaded at https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/.
Code availability
Not applicable.
References
Andrews T, Doutriaux-Boucher M, Boucher O, Forster PM (2011) A regional and global analysis of carbondioxide physiological forcing and its impact on climate. Clim Dyn 36:783–792. https://doi.org/10.1007/s00382-010-0742-1
Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob Chang Biol 11(39–59):2005. https://doi.org/10.1111/j.1365-2486.2004.00890.x
Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Chang Biol 16:3327–3348
Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, Friedlingstein P, Schwinger J, Bopp L, Boucher O, Cadule P, Chamberlain MA, Christian JR, Delire C, Fisher RA, Hajima T, Ilyina T, Joetzjer E, Kawamiya M, Koven CD, Krasting JP, Law RM, Lawrence DM, Lenton A, Lindsay K, Pongratz J, Raddatz T, Séférian R, Tachiiri K, Tjiputra JF, Wiltshire A, Wu T, Ziehn T (2020) Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17:4173–4222. https://doi.org/10.5194/bg-17-4173-2020
Betts AK (2009) Land-surface-atmosphere coupling in observations and models. J Adv Model Earth Syst 1:4. https://doi.org/10.3894/JAMES.2009.1.4
Betts RA, McNeall D (2018) How much CO2 at 1.5 °C and 2 °C? Nat Clim Chang 8:546–548. https://doi.org/10.1038/s41558-018-0199-5
Boé J (2013) Modulation of soil moisture-precipitation interactions over France by large scale circulation. Clim Dyn 40(3–4):875–892
Boé J (2016) Modulation of the summer hydrological cycle evolution over western Europe by anthropogenic aerosols and soil-atmosphere interactions. Geophys Res Lett 43:7678–7685. https://doi.org/10.1002/2016GL069394
Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702. https://doi.org/10.1029/2007GL032417
Boé J, Terray L, Cassou C, Najac J (2009) Uncertainties in European summer precipitation changes: role of large scale circulation. Climate Dynamics, 2009 33(2–3):265–276. https://doi.org/10.1007/s00382-008-0474-7
Boé J, Somot S, Corre L, Nabat P (2020) Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Clim Dyn 54:2981–3002. https://doi.org/10.1007/s00382-020-05153-1
Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V et al (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of advances in modeling earth systems 12:e2019MS002010. https://doi.org/10.1029/2019MS002010
Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci 107(21):9513–9518. https://doi.org/10.1073/pnas.0913000107
Cherchi A, Fogli PG, Lovato T, Peano D, Iovino D, Gualdi S, Masina S, Scoccimarro E, Materia S, Bellucci, and Navarra, A. (2019) Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J Adv Model Earth Syst 11(1):185–209
Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility, in climate change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U. K., and New York, pp 1029–1136
DeAngelis AM, Qu X, Hall A (2016) Importance of vegetation processes for model spread in the fast precipitation response to CO2 forcing. Geophys Res Lett 43:12,550–12,559. https://doi.org/10.1002/2016GL071392
Decharme B, Delire C, Minvielle M, Colin J, Vergnes J-P, Alias A, Saint-Martin D, Séférian R, Sénési S, Voldoire A (2019) Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6 climate model and in global off-line hydrological applications. J Adv Model Earth Syst 11:1207–1252
Delire C, Séférian R, Decharme B, Alkama R, Calvet J-C, Carrer D et al (2020) The global land carbon cycle simulated with ISBA-CTRIP: improvements over the last decade. J Adv Model Earth Syst 12:e2019MS001886. https://doi.org/10.1029/2019MS001886
Douville H, Planton S, Royer J-F, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) Importance of vegetation feedbacks in doubled-CO2 time-slice experiment. J Geophys Res 105:14841–14861
Entekhabi D, Rodriguez-Iturbe I, Bras RL (1992) Variability in large-scale water balance with land surface–atmosphere interaction. J Clim 5:798–813
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Field CB, Jackson RB, Mooney HA (1995) Stomatal response to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225
Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D’ Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Chang 5(6):579–583
Hagemann S, Stacke T (2015) Impact of the soil hydrology scheme on simulated soil moisture memory. Clim Dyn 44:1731–1750. https://doi.org/10.1007/s00382-014-2221-6
Hajima T, Watanabe M, Yamamoto A, Tatebe H, Noguchi MA, Abe M, Ohgaito R, Ito A, Yamazaki D, Okajima H, Ito A, Takata K, Ogochi K, Watanabe S, Kawamiya M (2020) Development of the MIROC-ES2L earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci Model Dev 13:2197–2244. https://doi.org/10.5194/gmd-13-2197-2020
Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection, J. Climate 22(19):5003–5020
Hong T, Dong W, Ji D, Dai T, Yang S, Wei T (2019) The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle Theor. Theor Appl Climatol 136:135–144
Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151:143–176. https://doi.org/10.1016/S0304-3800(01)00473-2
Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. https://doi.org/10.1007/s10113-013-0499-2
Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, Graven H, Hoffman F, Ilyina T, John JG, Jung M, Kawamiya M, Koven C, Pongratz J, Raddatz T, Randerson JT, Zaehle S (2016) C4MIP—the coupled climate-carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci Model Dev 9(8):2853–2880
Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM for coupled climate studies. Global Biogeochem Cy 19:GB1015. https://doi.org/10.1029/2003GB002199
Law, R. M., Ziehn, T., Matear, R. J., Lenton, A., Chamberlain, M. A., Stevens, L. E., Wang, Y.-P., Srbinovsky, J., Bi, D., Yan, H., and Vohralik, P. F. (2017), The carbon cycle in the Australian community climate and earth system simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation, Geosci Model Dev, 10, 2567–2590, https://doi.org/10.5194/gmd-10-2567-2017
Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc 86(2):225–234
Lawrence DM, Fisher RA, Koven CD, Oleson KW, Swenson SC, Bonan G, Collier N, Ghimire B, van Kampenhout L, Kennedy D, Kluzek E, Lawrence PJ, Li F, Li H, Lombardozzi D, Riley WJ, Sacks WJ, Shi M, Vertenstein M, Wieder WR, Xu C, Ali AA, Badger AM, Bisht G, van den Broeke M, Brunke MA, Burns SP, Buzan J, Clark M, Craig A, Dahlin K, Drewniak B, Fisher JB, Flanner M, Fox AM, Gentine P, Hoffman F, Keppel-Aleks G, Knox R, Kumar S, Lenaerts J, Leung LR, Lipscomb WH, Lu Y, Pandey A, Pelletier JD, Perket J, Randerson JT, Ricciuto DM, Sanderson BM, Slater A, Subin ZM, Tang J, Thomas RQ, Val Martin M, Zeng X (2019) The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J Adv Model Earth Sy 11:4245–4287. https://doi.org/10.1029/2018MS001583
Lemordant L, Gentine P (2019) Vegetation response to rising CO2 impacts extreme temperatures. Geophys Res Lett 46:1383–1392
Lemordant L, Gentine P, Swann AS, Cook BI, Scheff J (2018) Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc Natl Acad Sci 115(16):4093–4098
Leutwyler, D., Imamovic, A., and Schär, C. (2021), The continental-scale soil-moisture precipitation feedback in Europe with parameterized and explicit convection, journal of climate (published online ahead of print 2021)
Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R et al (2019) Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems 11:998–1038. https://doi.org/10.1029/2018MS001400
Milly P, Dunne K (2016) Potential evapotranspiration and continental drying. Nat Clim Chang 6:946–949. https://doi.org/10.1038/nclimate3046
Milly P, Dunne K (2017) A hydrologic drying Bias in water-resource impact analyses of anthropogenic climate change. J Am Water Resour Assoc 53(4):822–838
Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42(1):181–203
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J. F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., & Yang, Z. L. (2013). Technical description of version 4.5 of the community land model (CLM). NCAR technical note, NCAR/TN-503+STR
Reick CH, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in MPI-ESM. J Adv Model Earth Sy 5:459–482. https://doi.org/10.1002/jame.20022
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A. (2003), The atmospheric general circulation model ECHAM5. PART I: model description, max Planck Institute for Meteorology Report, 349, 1–127, available at: http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf (last access: 20 may 2020)
Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil–precipitation feedback: a process study with a regional climate model. J Clim 12(3):722–741
Schwingshackl C, Davin EL, Hirschi M, Sørland SL, Wartenburger R, Seneviratne SI (2019) Regional climate model projections underestimate future warming due to missing plant physiological CO2 response. Environ Res Lett 14(11):114019
Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J et al (2019) Evaluation of CNRM earth-system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems 11:4182–4227. https://doi.org/10.1029/2019MS001791
Seland Ø, Bentsen M, Olivié D, Toniazzo T, Gjermundsen A, Graff LS, Debernard JB, Gupta AK, He Y-C, Kirkevåg A, Schwinger J, Tjiputra J, Aas KS, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, Karset IHH, Landgren O, Liakka J, Moseid KO, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iversen T, Schulz M (2020) Overview of the Norwegian earth system model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci Model Dev 13:6165–6200. https://doi.org/10.5194/gmd-13-6165-2020
Sellar AA, Jones CG, Mulcahy JP, Tang Y, Yool A, Wiltshire A et al (2019) UKESM1: description and evaluation of the U.K. earth system model. Journal of Advances in Modeling Earth Systems 11:4513–4558. https://doi.org/10.1029/2019MS001739
Seneviratne SI, Lüthi D, Litschi M, Schar C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209
Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161
Skinner CB, Poulsen CJ, Chadwick R, Diffenbaugh NS, Fiorella RP (2017) The role of plant CO2 physiological forcing in shaping future daily-scale precipitation. J Clim 30:2319–2340
Skinner CB, Poulsen CJ, Mankin J (2018) Amplification of heat extremes by plant CO2 physiological forcing. Nat Commun 9(1):1094
Strain BR (1987) Direct effects of increasing atmospheric CO2 on plants and ecosystems. Trends Ecol Evol 2(1):18–21
Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian earth system model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498
The NCAR Command Language (Version 6.6.2) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD https://doi.org/10.5065/D6WD3XH5
Verseghy, D.L. (2010), The Canadian land surface scheme (CLASS): its history and future, Atmos. Ocean, 38, 1–13
Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282
Wei J, Zhao J, Chen H, Liang X-Z (2021) Coupling between land surface fluxes and lifting condensation level: mechanisms and sensitivity to model physics parameterizations. J Geophys Res-Atmos 126:e2020JD034313
Wiltshire AJ, Burke EJ, Chadburn SE, Jones CD, Cox PM, Davies-Barnard T, Friedlingstein P, Harper AB, Liddicoat S, Sitch S, Zaehle S (2021) JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geosci Model Dev 14:2161–2186. https://doi.org/10.5194/gmd-14-2161-2021
Yang Y, Roderick ML, Zhang S et al (2019) Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat Clim Chang 9:44–48. https://doi.org/10.1038/s41558-018-0361-0
Acknowledgements
The analyses and figures in this study have been done with the NCAR Command Language (Version 6.6.2) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modeling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Conflict of interest/competing interests
The author declares no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Boé, . The physiological effect of CO2 on the hydrological cycle in summer over Europe and land-atmosphere interactions. Climatic Change 167, 21 (2021). https://doi.org/10.1007/s10584-021-03173-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10584-021-03173-2