Recent changing characteristics of dry and wet spells in Canada

Abstract

Under the possible impact of climate warming, recent changes in dry and wet spells have contributed significantly to climate-related hazards around the world. In this work, spatial and temporal variations in dry and wet spells over Canada are investigated using daily precipitation data from 1979 to 2018. The time-varying relationships between precipitation spells and large-scale climate anomalies are modeled using a nonstationary generalized extreme value (GEV) distribution and Bayesian quantile regression. Over the period 1979–2018, significant changes in dry and wet spells have been observed across Canada, particularly in the southern Canadian Prairies (CP), where both the number and duration of dry spells show positive trends. Dry and wet spells over many parts of Canada are nonstationary under the effects of the El Niño–Southern Oscillation (ENSO) and the Pacific–North American pattern (PNA), with PNA having stronger effects on annual maximum dry spells than ENSO, especially in the central CP and eastern Ontario. For western Canada, the influence of ENSO on dry spells tends to be relatively strong, especially for dry spells of high quantiles, as El Niño generally induces atmospheric moisture deficit. For central Canada, ENSO and PNA have a negative (positive) impact on the wet spell duration of low (high) quantiles. For eastern Canada, PNA is negatively correlated with the duration of wet spells, especially for wet spells of high quantiles. Therefore, a better understanding of the spatial and temporal variability in dry and wet spell return periods will be useful for the effective management of water resources, and for developing effective disaster mitigation measures against the possible social and economic impacts of climate-related hazards.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science. American Association for the Advancement of Science 321(5895):1481–1484. https://doi.org/10.1126/science.1160787

    Article  Google Scholar 

  2. Asong ZE, Wheater HS, Bonsal B, Razavi S, Kurkute S (2018) Historical drought patterns over Canada and their teleconnections with large-scale climate signals. Hydrol Earth Syst Sci 22(6):3105–3124. https://doi.org/10.5194/hess-22-3105-2018

    Article  Google Scholar 

  3. Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press

  4. Benoit DF, Van den Poel D (2017) bayesQR: a Bayesian approach to quantile regression. J Stat Softw 76(7):1–32. https://doi.org/10.18637/jss.v076.i07

    Article  Google Scholar 

  5. Bonsal B, Shabbar A (2008) Impacts of large-scale circulation variability on low streamflows over Canada: a review. Can Water Resour J. Taylor & Francis Group 33(2):137–154. https://doi.org/10.4296/cwrj3302137

    Article  Google Scholar 

  6. Bonsal BR, Lawford RG (1999) Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian prairies. Int J Climatol 19(13):1445–1458

    Article  Google Scholar 

  7. Bonsal BR, Wheaton EE, Chipanshi AC, Lin C, Sauchyn DJ, Wen L (2011) Drought research in Canada: a review. Atmosphere-Ocean. Taylor & Francis 49(4):303–319. https://doi.org/10.1080/07055900.2011.555103

    Article  Google Scholar 

  8. Carrillo CM, Castro CL, Garfin G, Chang H-I, Bukovsky MS, Mearns LO (2018) Pacific Sea surface temperature related influences on north American monsoon precipitation within north American regional climate change assessment program models. Int J Climatol Wiley-Blackwell. https://doi.org/10.1002/joc.5561

  9. Casanueva A, Rodríguez-Puebla C, Frías MD, González-Reviriego N (2014) Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol Earth Syst Sci 18(2):709–725. https://doi.org/10.5194/hess-18-709-2014

    Article  Google Scholar 

  10. Chen M, Shi W, Xie P, Silva VBS, Kousky VE, Higgins RW, Janowiak JE (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res Atmos. Wiley-Blackwell 113(4):D04110. https://doi.org/10.1029/2007JD009132

    Article  Google Scholar 

  11. Cindrić K, Pasarić Z, Gajić-Čapka M (2010) Spatial and temporal analysis of dry spells in Croatia. Theor Appl Climatol 102(1):171–184. https://doi.org/10.1007/s00704-010-0250-6

    Article  Google Scholar 

  12. Colli M, Stagnaro M, Lanza LG, Rasmussen ROY, Thériault JM (2020) Adjustments for wind-induced undercatch in snowfall measurements based on precipitation intensity. J Hydrometeorol 21(5):1039–1050. https://doi.org/10.1175/JHM-D-19-0222.1

    Article  Google Scholar 

  13. Coulibaly P (2006) Spatial and temporal variability of Canadian seasonal precipitation (1900-2000). Adv Water Resour 29(12):1846–1865. https://doi.org/10.1016/j.advwatres.2005.12.013

    Article  Google Scholar 

  14. Cui W, Dong X, Xi B, Kennedy A (2017) Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J Hydrometeorol 18(8):2227–2248. https://doi.org/10.1175/JHM-D-17-0029.1

    Article  Google Scholar 

  15. Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900-1995. Geophys Res Lett 25(17):3367–3370. https://doi.org/10.1029/98GL52511

    Article  Google Scholar 

  16. Dominguez F, Rivera E, Lettenmaier DP, Castro CL (2012) Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophys Res Lett 39(5): n/a-n/a. https://doi.org/10.1029/2011GL050762

  17. Elshorbagy A, Lindenas K, Azinfar H (2018) Risk-based quantification of the impact of climate change on storm water infrastructure. Water Sci. COPYRIGHT.TEXT=national Water Research Center 32(1):102–114. https://doi.org/10.1016/j.wsj.2017.12.003

    Article  Google Scholar 

  18. Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia Springer-Verlag 137(2):245–251. https://doi.org/10.1007/s00442-003-1331-3

    Article  Google Scholar 

  19. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA

  20. Gan TY, Gobena AK, Wang Q (2007) Precipitation of southwestern Canada: wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies. J Geophys Res Atmos 112(D10). https://doi.org/10.1029/2006JD007157

  21. Gan TY, Ito M, Huelsmann S, Qin X, Lu X, Liong SY, Rutschman P, Disse M, Koivosalo H (2016) Possible climate change/variability and human impacts, vulnerability of African drought prone regions, its water resources and capacity building. Hydrol Sci J. Taylor & Francis 61(7):1209–1226. https://doi.org/10.1080/02626667.2015.1057143

    Article  Google Scholar 

  22. Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. https://doi.org/10.18637/jss.v072.i08

    Article  Google Scholar 

  23. Gizaw MS, Gan TY (2016) Possible impact of climate change on future extreme precipitation of the Oldman, Bow and Red Deer River basins of Alberta. Int J Climatol. John Wiley & Sons, Ltd 36(1):208–224. https://doi.org/10.1002/joc.4338

    Article  Google Scholar 

  24. Gobena AK, Gan TY (2013) Assessment of trends and possible climate change impacts on summer moisture availability in western Canada based on metrics of the palmer drought severity index. J Clim 26(13):4583–4595. https://doi.org/10.1175/JCLI-D-12-00421.1

    Article  Google Scholar 

  25. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  26. Hou D, Charles M, Luo Y, Toth Z, Zhu Y, Krzysztofowicz R, Lin Y, Xie P, Seo D-J, Pena M, Cui B (2014) Climatology-calibrated precipitation analysis at fine scales: statistical adjustment of stage IV toward CPC gauge-based analysis. J Hydrometeorol 15(6):2542–2557. https://doi.org/10.1175/JHM-D-11-0140.1

    Article  Google Scholar 

  27. Hryciw LM, Atallah EH, Milrad SM, Gyakum JR (2013) A meteorological analysis of important contributors to the 1999–2005 Canadian prairie drought. Mon Weather Rev 141(10):3593–3609. https://doi.org/10.1175/MWR-D-12-00261.1

    Article  Google Scholar 

  28. Jiang R, Gan TY, Xie J, Wang N (2014) Spatiotemporal variability of Alberta’s seasonal precipitation, their teleconnection with large-scale climate anomalies and sea surface temperature. Int J Climatol 34(9):2899–2917. https://doi.org/10.1002/joc.3883

    Article  Google Scholar 

  29. Jiang R, Gan TY, Xie J, Wang N, Kuo CC (2015) Historical and potential changes of precipitation and temperature of Alberta subjected to climate change impact: 1900–2100. Theor Appl Climatol. Springer Vienna 127(3–4):725–739. https://doi.org/10.1007/s00704-015-1664-y

    Article  Google Scholar 

  30. Jiang R, Wang Y, Xie J, Zhao Y, Li F, Wang X (2019) Assessment of extreme precipitation events and their teleconnections to El Niño southern oscillation, a case study in the Wei River basin of China. Atmos Res Elsevier 218:372–384. https://doi.org/10.1016/j.atmosres.2018.12.015

    Article  Google Scholar 

  31. Lana X, Burgueño A, Martínez MD, Serra C (2006) Statistical distributions and sampling strategies for the analysis of extreme dry spells in Catalonia (NE Spain). J Hydrol. Elsevier 324(1–4):94–114. https://doi.org/10.1016/j.jhydrol.2005.09.013

    Article  Google Scholar 

  32. Leite-Filho AT, Sousa Pontes VY, Costa MH (2019) Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J Geophys Res Atmos 124(10):5268–5281. https://doi.org/10.1029/2018JD029537

    Article  Google Scholar 

  33. Li X, Babovic V (2018) A new scheme for multivariate, multisite weather generator with inter-variable, inter-site dependence and inter-annual variability based on empirical copula approach. Clim Dyn. Springer Berlin Heidelberg:1–21. https://doi.org/10.1007/s00382-018-4249-5

  34. Li X, Meshgi A, Babovic V (2016) Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int J Climatol. John Wiley & Sons, Ltd 36(15):4831–4846. https://doi.org/10.1002/joc.4672

    Article  Google Scholar 

  35. Lin H, Mo R, Vitart F, Stan C (2019) Eastern Canada flooding 2017 and its subseasonal predictions. Atmosphere-Ocean. Taylor & Francis 57(3):195–207. https://doi.org/10.1080/07055900.2018.1547679

    Article  Google Scholar 

  36. May W (2008) Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim Dyn. Springer-Verlag 30(6):581–603. https://doi.org/10.1007/s00382-007-0309-y

    Article  Google Scholar 

  37. Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49(2):163–177. https://doi.org/10.1080/07055900.2011.583910

    Article  Google Scholar 

  38. Milewska EJ, Vincent LA, Hartwell MM, Charlesworth K, Mekis É (2019) Adjusting precipitation amounts from Geonor and Pluvio automated weighing gauges to preserve continuity of observations in Canada. Can Water Resour J 44(2):127–145. https://doi.org/10.1080/07011784.2018.1530611

    Article  Google Scholar 

  39. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319(5863):573–574. https://doi.org/10.1126/science.1151915

    Article  Google Scholar 

  40. Nguyen P, Ombadi M, Sorooshian S, Hsu K, AghaKouchak A, Braithwaite D, Ashouri H, Thorstensen AR (2018) The PERSIANN family of global satellite precipitation data: a review and evaluation of products. Hydrol Earth Syst Sci 22(11):5801–5816. https://doi.org/10.5194/hess-22-5801-2018

    Article  Google Scholar 

  41. Pachauri RK, Meyer LA (2014) Climate change 2014 synthesis report. Contribution of working groups I, II, and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC

  42. Plummer DA, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Harvey R, De Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19(13):3112–3132. https://doi.org/10.1175/JCLI3769.1

    Article  Google Scholar 

  43. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep. Nature Publishing Group 4(1):4364. https://doi.org/10.1038/srep04364

    Article  Google Scholar 

  44. Pollock MD, O’Donnell G, Quinn P, Dutton M, Black A, Wilkinson ME, Colli M, Stagnaro M, Lanza LG, Lewis E, Kilsby CG, O’Connell PE (2018) Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Resour Res 54(6):3863–3875. https://doi.org/10.1029/2017WR022421

    Article  Google Scholar 

  45. Roque-Malo S, Kumar P (2017) Patterns of change in high frequency precipitation variability over North America. Sci Rep 7(1):10853. https://doi.org/10.1038/s41598-017-10827-8

  46. Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns associated with the southern oscillation. J Clim 10(12):3016–3027. https://doi.org/10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2

  47. Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS (2014) Observed changes in extreme wet and dry spells during the south Asian summer monsoon season. Nat Clim Chang. Nature Research 4(6):456–461. https://doi.org/10.1038/nclimate2208

    Article  Google Scholar 

  48. Singh N, Ranade A (2010) The wet and dry spells across India during 1951–2007. J Hydrometeorol 11(1):26–45. https://doi.org/10.1175/2009JHM1161.1

    Article  Google Scholar 

  49. Soulard N, Lin H, Yu B (2019) The changing relationship between ENSO and its extratropical response patterns. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-42922-3

    Article  Google Scholar 

  50. St. George S (2007) Streamflow in the Winnipeg River basin, Canada: trends, extremes and climate linkages. J Hydrol 332(3–4):396–411. https://doi.org/10.1016/j.jhydrol.2006.07.014

    Article  Google Scholar 

  51. Sushama L, Khaliq N, Laprise R (2010) Dry spell characteristics over Canada in a changing climate as simulated by the Canadian RCM. Glob Planet Chang Elsevier 74(1):1–14. https://doi.org/10.1016/j.gloplacha.2010.07.004

    Article  Google Scholar 

  52. Tan X, Gan TY (2017) Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns. Clim Dyn. Springer Berlin Heidelberg:1–19. https://doi.org/10.1007/s00382-016-3246-9

  53. Tan X, Gan TY, Chen S, Liu B (2018) Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections. Clim Dyn. Springer Berlin Heidelberg:1–20. https://doi.org/10.1007/s00382-018-4241-0

  54. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang. Kluwer Academic Publishers 79(3–4):185–211. https://doi.org/10.1007/s10584-006-9051-4

    Article  Google Scholar 

  55. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc. American Meteorological Society 84(9):1205–1217+1161. https://doi.org/10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  56. Vincent LA, Zhang X, Mekis E, Wan H, Bush EJ (2018) Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmosphere-Ocean. Taylor & Francis:1–18. https://doi.org/10.1080/07055900.2018.1514579

  57. Wan H, Zhang X, Barrow EM (2005) Stochastic modelling of daily precipitation for Canada. Atmosphere-Ocean 43(1):23–32. https://doi.org/10.3137/ao.430102

    Article  Google Scholar 

  58. Wang XL, Xu H, Qian B, Feng Y, Mekis E (2017) Adjusted daily rainfall and snowfall data for Canada. Atmosphere-Ocean. Taylor & Francis 55(3):155–168. https://doi.org/10.1080/07055900.2017.1342163

    Article  Google Scholar 

  59. Wasko C, Sharma A (2014) Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour Res 50(4):3608–3614. https://doi.org/10.1002/2013WR015194

    Article  Google Scholar 

  60. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53(9):315–324. https://doi.org/10.1002/j.1477-8696.1998.tb06408.x

    Article  Google Scholar 

  61. Xie P, Chen M, Shi W (2010) CPC unified gauge-based analysis of global daily precipitation. 24th Conference on Hydrology. Amer. Meteor. Soc: Atlanta

  62. Yang Y, Gan TY, Tan X (2019) Spatiotemporal changes in precipitation extremes over Canada and their teleconnections to large-scale climate patterns. J Hydrometeorol:275–296. https://doi.org/10.1175/jhm-d-18-0004.1

  63. Yang Y, Gan TY, Tan X (2020) Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada. Atmos Res. Elsevier 232:104695. https://doi.org/10.1016/j.atmosres.2019.104695

    Article  Google Scholar 

  64. Zhang J, Li L, Wu Z, Li X (2015) Prolonged dry spells in recent decades over north-Central China and their association with a northward shift in planetary waves. Int J Climatol 35(15):4829–4842. https://doi.org/10.1002/joc.4337

    Article  Google Scholar 

  65. Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean. Taylor & Francis Group 38(3):395–429. https://doi.org/10.1080/07055900.2000.9649654

    Article  Google Scholar 

  66. Zhang X, Wang J, Zwiers FW, Groisman PY (2010) The influence of large-scale climate variability on winter maximum daily precipitation over North America. J Clim 23(11):2902–2915. https://doi.org/10.1175/2010JCLI3249.1

    Article  Google Scholar 

Download references

Acknowledgments

This project was partly funded by the Natural Science and Engineering Research Council (NSERC) of Canada. The first author was also partly funded by the China Scholarship Council (CSC) and by the University of Alberta.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thian Yew Gan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 161 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gan, T.Y. & Tan, X. Recent changing characteristics of dry and wet spells in Canada. Climatic Change 165, 42 (2021). https://doi.org/10.1007/s10584-021-03046-8

Download citation

Keywords

  • Dry and wet spell
  • Generalized extreme value distribution (GEV)
  • Non-stationarity
  • Large-scale climate patterns
  • Bayesian quantile regression
  • Canada