A Bayesian test for the 4.2 ka BP abrupt climatic change event in southeast Europe and southwest Asia using structural time series analysis of paleoclimate data

Abstract

It has been proposed that there was an abrupt climatic change event around 4.2 ka BP that affected societies and even has been linked to the collapse of empires. Subsequent studies have reached conclusions that both support and contradict the proposed event; yet nevertheless, 4.2 ka BP has now been adopted as the stratigraphic boundary point between the Middle and Upper Holocene. Time series plots of paleoclimate studies that claim to support the abrupt climate change hypothesis show differing temporal patterns so, in this study, we apply the Bayesian structural time series (BSTS) approach using the CausalImpact package to test data from southeast Europe and southwest Asia for which it is claimed that they demonstrate a climatic anomaly around 4.2 ka BP. To do this, each “affected” time series is synthetically reconstructed using “unaffected” series as predictors in a fully Bayesian framework by the BSTS method and then forecast beyond the assumed starting point of the event. A Bayesian hypothesis test is then applied to differences between each synthetic and real time series to test the impact of the event against the forecast data. While our results confirm that some studies cited in support of the 4.2 ka BP event hypothesis do indeed hold true, we also show that a number of other studies fail to demonstrate any credible effect. We observe spatial and data patterning in our results, and we speculate that this climatic deterioration may have been a consequence of an asymmetrical northward expansion or migration of the Northern Hemisphere Hadley cell. Furthermore, we observe that while the signals are generally not credible, types of proxy data from the Mesopotamia region and east are consistent with aeolian dust storms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Code availability

All the data used through this study and the code are available through https://github.com/zboraon/causalimpactfor4_2kaBPevent.

Notes

  1. 1.

    Kiloannum before present, meaning thousand years before 1950 CE.

  2. 2.

    Within the scope of this study, the term “impact” signifies only a change in the nature of the time series. We do not presuppose the physical cause of that impact, which may be external or created by an extreme climate state as a result of nonlinear interactions within the dynamic climate system itself without any external trigger.

References

  1. Akçer-Ön S, Greaves AM, Manning SW, Ön Z B, Çaǧatay M N, Sakınç M, Oflaz A, Tunoǧlu C, Salihoǧlu R (2020) Redating the formation of Lake Bafa, western Turkey: Integrative geoarchaeological methods and new environmental and dating evidence. Geoarchaeology 35(5):659–677. https://doi.org/10.1002/gea.21791

    Article  Google Scholar 

  2. Altabet MA, Higginson MJ, Murray DW (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415:159–162. https://doi.org/10.1038/415159a

    Article  Google Scholar 

  3. Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis technical memorandum NESDIS NGDC-24, NOAA, USA

  4. Andrews JE, Carolin SA, Peckover EN, Marca A, Al-Omari S, Rowe PJ (2020) Holocene stable isotope record of insolation and rapid climate change in a stalagmite from the Zagros of Iran. Quat Sci Rev 241:106433. https://doi.org/10.1016/j.quascirev.2020.106433

    Article  Google Scholar 

  5. Arz HW, Kaiser J, Fleitmann D (2015) Paleoceanographic and paleoclimatic changes around 2200BC recorded in sediment cores from the northern Red Sea. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: A climatic breakdown as a cause for the collapse of the old world?: 7th Archaeological Conference of Central Germany, October 23–26, 2014 in Halle (Saale). Landesamt für Denkmalpflege und Archäologie Sachsen–Anhalt, Landesmuseum für Vorgeschichte. pp 53–60

  6. Arz HW, Lamy F, Pätzold J (2006) A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quat Res 66(3):432–441. https://doi.org/10.1016/j.yqres.2006.05.006

    Article  Google Scholar 

  7. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67(17):3181–3199. https://doi.org/10.1016/S0016-7037(02)01031-1

    Article  Google Scholar 

  8. Berkelhammer M, Sinha A, Stott L, Cheng H, Pausata FSR, Yoshimura K (2013) An abrupt shift in the Indian Monsoon 4000 years ago. In: Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD (eds) Climates, landscapes, and civilizations. American Geophysical Union, pp 75–88. https://doi.org/10.1029/2012GM001207

  9. Bordon A, Peyron O, Lézine A M, Brewer S, Fouache E (2009) Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quat Int 200(1):19–30. https://doi.org/10.1016/j.quaint.2008.05.014

    Article  Google Scholar 

  10. Bozkurt D, Turunçoğlu U, Şen ÖL, Önol B, Dalfes HN (2012) Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the eastern Mediterranean–Black Sea region: evaluation of the reference period. Clim Dyn 39(1):207–225. https://doi.org/10.1007/s00382-011-1187-x

    Article  Google Scholar 

  11. Bradley R, Bakke J (2019a) Interactive comment on “Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?” by Raymond Bradley and Jostein Bakke. Clim Past Discuss. https://doi.org/10.5194/cp-2018-162-AC4

  12. Bradley RS (2015) Paleoclimatology: reconstructing climates of the quaternary, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  13. Bradley RS, Bakke J (2019b) Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?. Clim Past 15(5):1665–1676. https://doi.org/10.5194/cp-15-1665-2019

    Article  Google Scholar 

  14. Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL (2015) Inferring causal impact using Bayesian structural time-series models. Ann Appl Stat 9(1):247–274. https://doi.org/10.1214/14-AOAS788

    Article  Google Scholar 

  15. Carolin SA, Walker RT, Day CC, Ersek V, Sloan RA, Dee MW, Talebian M, Henderson GM (2019) Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change. Proc Natl Acad Sci USA 116(1):67–72. https://doi.org/10.1073/pnas.1808103115

    Article  Google Scholar 

  16. Castañeda IS, Schefuß E, Pätzold J, Sinninghe Damsté JS, Weldeab S, Schouten S (2010) Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years. Paleoceanography 25(1):PA1208. https://doi.org/10.1029/2009PA001740

    Article  Google Scholar 

  17. Çağatay MN, Öğretmen N, Damcı E, Stockhecke M, Sancar Ü, Eriş KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat Sci Rev 104:97–116. https://doi.org/10.1016/j.quascirev.2014.09.027

    Article  Google Scholar 

  18. Chase BM, Meadows ME, Scott L, Thomas DSG, Marais E, Sealy J, Reimer PJ (2009) A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology 37(8):703–706. https://doi.org/10.1130/G30053A.1

    Article  Google Scholar 

  19. Cheng H, Sinha A, Verheyden S, Nader FH, Li XL, Zhang PZ, Yin JJ, Yi L, Peng YB, Rao ZG, Ning YF, Edwards RL (2015) The climate variability in northern Levant over the past 20000 years. Geophys Res Lett 42(20):8641–8650. https://doi.org/10.1002/2015GL065397

    Article  Google Scholar 

  20. Constantin S, Bojar AV, Lauritzen SE, Lundberg J (2007) Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr Palaeoclimatol Palaeoecol 243(3):322–338. https://doi.org/10.1016/j.palaeo.2006.08.001

    Article  Google Scholar 

  21. Cullen HM, deMenocal PB (2000) North Atlantic influence on Tigris–Euphrates streamflow. Int J Climatol 20(8):853–863. https://doi.org/10.1002/1097-0088(20000630)20:8<853::AID-JOC497>3.0.CO;2-M

    Article  Google Scholar 

  22. Cullen HM, deMenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 28(4):379–382. https://doi.org/10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2

    Article  Google Scholar 

  23. Di Rita F, Magri D (2019) The 4.2 ka BP event in the vegetation record of the central Mediterranean. Clim Past 15(1):237–251. https://doi.org/10.5194/cp-15-237-2019

    Article  Google Scholar 

  24. Drăguşin V, Staubwasser M, Hoffmann DL, Ersek V, Onac BP, Veres D (2014) Constraining Holocene hydrological changes in the Carpathian–Balkan region using speleothem δ18O and pollen-based temperature reconstructions. Clim Past 10(4):1363–1380. https://doi.org/10.5194/cp-10-1363-2014

    Article  Google Scholar 

  25. Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A, Pickett M, Cartwright I, Piccini L (2006) Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34(2):101–104. https://doi.org/10.1130/G22103.1

    Article  Google Scholar 

  26. Durbin J, Koopman SJ (2012) Time series analysis by state space methods, vol 38, 2nd edn. OUP, Oxford. https://doi.org/10.1093/acprof:oso/9780199641178.001.0001

    Google Scholar 

  27. Eastwood WJ, Leng MJ, Roberts N, Davis B (2007) Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Golhisar,̈ southwest Turkey. J Quat Sci 22(4):327–341. https://doi.org/10.1002/jqs.1062

    Article  Google Scholar 

  28. Ehrmann W, Schmiedl G, Hamann Y, Kuhnt T, Hemleben C, Siebel W (2007) Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeogr Palaeoclimatol Palaeoecol 249(1):36–57. https://doi.org/10.1016/j.palaeo.2007.01.004

    Article  Google Scholar 

  29. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26(1):170–188. https://doi.org/10.1016/j.quascirev.2006.04.012

    Article  Google Scholar 

  30. Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M, Göktürk OM, Fankhauser A, Pickering R, Raible CC, Matter A, Kramers J, Tüysüz O (2009) Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett 36(19):L19707. https://doi.org/10.1029/2009GL040050

    Article  Google Scholar 

  31. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang SW et al (2001) Observed climate variability and change. In: Houghton JT (ed) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report the intergovernmental panel on climate change. Cambridge University Press, pp 99–181

  32. Francke A, Wagner B, Leng MJ, Rethemeyer J (2013) A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece). Clim Past 9(1):481–498. https://doi.org/10.5194/cp-9-481-2013

    Article  Google Scholar 

  33. George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889. https://doi.org/10.1080/01621459.1993.10476353

    Article  Google Scholar 

  34. George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7(2):339–373. https://doi.org/10.2307/24306083

    Google Scholar 

  35. Göktürk OM (2011) Climate in the Eastern Mediterranean through the Holocene inferred from Turkish stalagmites. PhD thesis, University of Bern

  36. Göktürk OM, Fleitmann D, Badertscher S, Cheng H, Edwards RL, Leuenberger M, Fankhauser A, Tüysüz O, Kramers J (2011) Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quat Sci Rev 30(19):2433–2445. https://doi.org/10.1016/j.quascirev.2011.05.007

    Article  Google Scholar 

  37. Haldon J, Chase AF, Eastwood W, Medina-Elizalde M, Izdebski A, Ludlow F, Middleton G, Mordechai L, Nesbitt J, Turner B (2020) Demystifying collapse: climate, environment, and social agency in pre-modern societies. Millennium 17(1):1–33. https://doi.org/10.1515/mill-2020-0002

    Article  Google Scholar 

  38. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the holocene. Science 293(5533):1304–1308. https://doi.org/10.1126/science.1059725

    Article  Google Scholar 

  39. Höflmayer F (2017a) The late third millennium in the Ancient Near East: chronology, C14 and climate change. USA: University of Chicago

  40. Höflmayer F (2015) The southern Levant, Egypt, and the 4.2 ka BP event. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: a climatic breakdown as a cause for the collapse of the Old World?: 7th Archaeological Conference of Central Germany, October 23-26, 2014 in Halle (Saale). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte. pp 113-130

  41. Höflmayer F (2017b) The late third millennium B.C. in the Ancient Near East and Eastern Mediterranean: a time of collapse and transformation. In: Höflmayer F (ed) The late third millennium in the Ancient Near East: Chronology, C14, and climate change, USA, University of Chicago, pp 1–28

  42. Jones S, Fleitmann D, Black S (2016) A critical evaluation of the 4.2 ka BP event using new high resolution evidence from stalagmites in the Middle East. In: EGU General assembly conference abstracts, vol 18. pp EPSC2016–582

  43. Kaniewski D, Van Campo E, Morhange C, Guiot J, Zviely D, Shaked I, Otto T, Artzy M (2013) Early urban impact on Mediterranean coastal environments. Sci Rep 3:3540. https://doi.org/10.1038/srep03540

    Article  Google Scholar 

  44. Kathayat G, Cheng H, Sinha A, Berkelhammer M, Zhang H, Duan P, Li H, Li X, Ning Y, Edwards RL (2018) Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim Past 14(12):1869–1879. https://doi.org/10.5194/cp-14-1869-2018

    Article  Google Scholar 

  45. Kuhnt T, Schmiedl G, Ehrmann W, Hamann Y, Andersen N (2008) Stable isotopic composition of Holocene benthic foraminifers from the Eastern Mediterranean Sea: past changes in productivity and deep water oxygenation. Palaeogeogr Palaeoclimatol Palaeoecol 268(1):106–115. https://doi.org/10.1016/j.palaeo.2008.07.010

    Article  Google Scholar 

  46. Kuzucuoğlu C, Marro C (2007) Societés humaines et changement climatique à la fin du troisième millénaire: une crise a-t-elle eu lieu en haute Mésopotamie?: Actes du Colloque de Lyon, 5-8 décembre 2005́. Varia Anatolica. Institut Français d’Études Anatoliennes-Georges Dumézil

  47. Kuzucuoǧlu C (2007) Climatic and environmental trends during the third millennium B.C. in Upper Mesopotamia. In: Kuzucuoġlu C, Marro C (eds) Societés humaines et changement climatique à la fin du troisième millénaire: une crise a-t-elle eu lieu en Haute Mésopotamie? Actes du Colloque de Lyon (5-8 décembre 2005)́. Institut Français d’Études Anatoliennes-Georges Dumézil, pp 459–480

  48. Lamy F, Arz HW, Bond GC, Bahr A, Pätzold J (2006) Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation, vol 21, p PA1008. https://doi.org/10.1029/2005PA001184

  49. Lemcke G, Sturm M (1997) δ18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): preliminary results. In: Dalfes HN, Kukla G, Weiss H (eds) Third Millennium BC climate Change and Old World Collapse. Springer, Berlin, pp 653–678. https://doi.org/10.1007/978-3-642-60616-8_29

  50. Litt T, Ohlwein C, Neumann FH, Hense A, Stein M (2012) Holocene climate variability in the Levant from the Dead Sea pollen record. Quat Sci Rev 49:95–105. https://doi.org/10.1016/j.quascirev.2012.06.012

    Article  Google Scholar 

  51. Magny M, Combourieu-Nebout N, de Beaulieu JL, Bout-Roumazeilles V, Colombaroli D, Desprat S, Francke A, Joannin S, Ortu E, Peyron O, Revel M, Sadori L, Siani G, Sicre MA, Samartin S, Simonneau A, Tinner W, Vannière B, Wagner B, Zanchetta G, Anselmetti F, Brugiapaglia E, Chapron E, Debret M, Desmet M, Didier J, Essallami L, Galop D, Gilli A, Haas JN, Kallel N, Millet L, Stock A, Turon JL, Wirth S (2013) North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim Past 9 (5):2043–2071. https://doi.org/10.5194/cp-9-2043-2013

    Article  Google Scholar 

  52. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62(3):243–255. https://doi.org/10.1016/j.yqres.2004.07.001

    Article  Google Scholar 

  53. Meller H, Arz HW, Jung R, Risch R (eds) (2015) BC: A climatic breakdown as a cause for the collapse of the old world?: 7th Archaeological conference of Central Germany, October 23-26 2014 in Halle (Saale). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte

    Google Scholar 

  54. Middleton GD (2018) Bang or whimper? Science 361(6408):1204–1205. https://doi.org/10.1126/science.aau8834

    Article  Google Scholar 

  55. Moreno García JC (2015) Climatic change or sociopolitical transformation? Reassessing late 3rd millennium BC in Egypt. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: a climatic breakdown as a cause for the collapse of the old world?: 7th Archaeological Conference of Central Germany, October 23-26, 2014 in Halle (Saale). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte. pp 79-94

  56. Ön ZB, Akçer-Ön S, Özeren MS, Eriş KK, Greaves AM, Çağatay MN (2017) Climate proxies for the last 17.3 ka from Lake Hazar (Eastern Anatolia), extracted by independent component analysis of μ-XRF data. Quat Int 486:17–28. https://doi.org/10.1016/j.quaint.2017.08.066

    Article  Google Scholar 

  57. Ön ZB, Greaves AM, Akçer-Ön S, Özeren MS (2019) Comment on H. Weiss’ review of “Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?”. Clim Past Discussions. https://doi.org/10.5194/cp-2018-162-SC2

  58. Ön ZB, Özeren MS (2018) Temperature and precipitation variability in eastern Anatolia: results from independent component analysis of Lake Van sediment data spanning the last 250 kyr BP. Quat Int 514:119–129. https://doi.org/10.1016/j.quaint.2018.11.037

    Article  Google Scholar 

  59. Peręoiu A, Onac BP, Wynn JG, Blaauw M, Ionita M, Hansson M (2017) Holocene winter climate variability in Central and Eastern Europe. Sci Rep 7(1):1196. https://doi.org/10.1038/s41598-017-01397-w

    Article  Google Scholar 

  60. Peyron O, Magny M, Goring S, Joannin S, de Beaulieu JL, Brugiapaglia E, Sadori L, Garfi G, Kouli K, Ioakim C, Combourieu-Nebout N (2013) Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data. Clim Past 9(3):1233–1252. https://doi.org/10.5194/cp-9-1233-2013

    Article  Google Scholar 

  61. Pfälzner P (2017) Habur ware and social continuity: the chronology of the Early to Middle Bronze Age transition in the Syrian Jezireh. In: Höflmayer F (ed) The late third millennium in the Ancient Near East: chronology, C14, and climate change. USA: University of Chicago, pp 163–203

  62. Psomiadis D, Dotsika E, Albanakis K, Ghaleb B, Hillaire-Marcel C (2018) Speleothem record of climatic changes in the northern Aegean region (Greece) from the Bronze Age to the collapse of the Roman Empire. Palaeogeogr Palaeoclimatol Palaeoecol 489:272–283. https://doi.org/10.1016/j.palaeo.2017.10.021

    Article  Google Scholar 

  63. Railsback LB, Liang F, Brook G, Voarintsoa NRG, Sletten HR, Marais E, Hardt B, Cheng H, Edwards RL (2018) The timing, two-pulsed nature, and variable climatic expression of the 4.2 ka event: A review and new high-resolution stalagmite data from Namibia. Quat Sci Rev 186:78–90. https://doi.org/10.1016/j.quascirev.2018.02.015

    Article  Google Scholar 

  64. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJ, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28. https://doi.org/10.1016/j.quascirev.2014.09.007

    Article  Google Scholar 

  65. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  66. Roberts N, Jones MD, Benkaddour A, Eastwood WJ, Filippi ML, Frogley MR, Lamb HF, Leng MJ, Reed JM, Stein M, Stevens L, Valero-Garcés B, Zanchetta G (2008) Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quat Sci Rev 27(25):2426–2441. https://doi.org/10.1016/j.quascirev.2008.09.005

    Article  Google Scholar 

  67. Roberts N, Moreno A, Valero-Garcés BL, Corella JP, Jones M, Allcock S, Woodbridge J, Morellón M, Luterbacher J, Xoplaki E, Türkeş M (2012) Palaeolimnological evidence for an east-west climate see-saw in the Mediterranean since AD 900. Global Planet Change 84-85:23–34. https://doi.org/10.1016/j.gloplacha.2011.11.002

    Article  Google Scholar 

  68. Roberts N, Reed JM, Leng MJ, Kuzucuoǧlu C, Fontugne M, Bertaux J, Woldring H, Bottema S, Black S, Hunt E, Karabıyıkoǧlu M (2001) The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11(6):721–736. https://doi.org/10.1191/09596830195744

    Article  Google Scholar 

  69. Rohling E, Mayewski P, Abu-Zied R, Casford J, Hayes A (2002) Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim Dyn 18(7):587–593. https://doi.org/10.1007/s00382-001-0194-8

    Article  Google Scholar 

  70. Scholz D, Frisia S, Borsato A, Spötl C, Fohlmeister J, Mudelsee M, Miorandi R, Mangini A (2012) Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data. Clim Past 8(4):1367–1383. https://doi.org/10.5194/cp-8-1367-2012

    Article  Google Scholar 

  71. Schwartz GM (2017) Western syria and the third- to second-millennium B.C. Transition. In: Höflmayer F (ed) The late third millennium in the Ancient Near East: chronology, C14, and climate change. USA: University of Chicago, pp 87–128

  72. Scott SL, Varian HR (2014) Predicting the present with Bayesian structural time series. Int J Math Model Numer Optim 5(1-2):4–23. https://doi.org/10.1504/IJMMNO.2014.059942

    Google Scholar 

  73. Scott SL, Varian HR (2015) Bayesian variable selection for nowcasting economic time series. In: Goldfarb A, Greenstein SM, Tucker CE (eds) Economic analysis of the digital economy. University of Chicago Press, pp 119–135

  74. Sharifi A, Pourmand A, Canuel EA, Ferer-Tyler E, Peterson LC, Aichner B, Feakins SJ, Daryaee T, Djamali M, Beni AN, Lahijani HA, Swart PK (2015) Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: the hand that rocked the Cradle of Civilization? Quat Sci Rev 123:215–230. https://doi.org/10.1016/j.quascirev.2015.07.006

    Article  Google Scholar 

  75. Siani G, Magny M, Paterne M, Debret M, Fontugne M (2013) Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea. Clim Past 9(1):499–515. https://doi.org/10.5194/cp-9-499-2013

    Article  Google Scholar 

  76. Sirocko F (2015) Winter climate and weather conditions during the “Little-Ice-Age-like cooling events” of the Holocene: implications for the spread of “Neolithisation”. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: a climatic breakdown as a cause for the collapse of the old world?: 7th Archaeological Conference of Central Germany, October 23-26, 2014 in Halle (Saale), Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte. pp 579–594

  77. Staubwasser M, Weiss H (2006) Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quat Res 66(3):372–387. https://doi.org/10.1016/j.yqres.2006.09.001

    Article  Google Scholar 

  78. Stockhecke M, Timmermann A, Kipfer R, Haug GH, Kwiecien O, Friedrich T, Menviel L, Litt T, Pickarski N, Anselmetti FS (2016) Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat Sci Rev 133:77–95. https://doi.org/10.1016/j.quascirev.2015.12.016

    Article  Google Scholar 

  79. Torfstein A, Goldstein SL, Stein M, Enzel Y (2013) Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat Sci Rev 69:1–7. https://doi.org/10.1016/j.quascirev.2013.02.015

    Article  Google Scholar 

  80. Ulbrich U, Lionello P, Belušić D, Jacobeit J, Knippertz P, Kuglitsch FG, Leckebusch GC, Luterbacher J, Maugeri M, Maheras P, Nissen KM, Pavan V, Pinto JG, Saaroni H, Seubert S, Toreti A, Xoplaki E, Ziv B (2012) Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: Lionello P (ed) The Climate of the Mediterranean Region. https://doi.org/10.1016/B978-0-12-416042-2.00005-7. Elsevier, Oxford, pp 301–346

  81. Ur JA (2015) Urban adaptations to climate change in Northern Mesopotamia. In: Kerner S, Dann R, Bangsgaard Jensen P (eds) Climate and ancient societies. Museum Tusculanum Press, Copenhagen, pp 69–95

  82. Voosen P (2018) New geological age comes under fire. Science 361 (6402):537–538. https://doi.org/10.1126/science.361.6402.537

    Article  Google Scholar 

  83. Vossel H, Roeser P, Litt T, Reed JM (2018) Lake Kinneret (Israel): new insights into Holocene regional palaeoclimate variability based on high-resolution multi-proxy analysis. The Holocene 28(9):1395–1410. https://doi.org/10.1177/0959683618777071

    Article  Google Scholar 

  84. Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41(3):407–430. https://doi.org/10.1007/s10933-008-9234-2

    Article  Google Scholar 

  85. Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (international commission on stratigraphy). J Quat Sci 27(7):649–659. https://doi.org/10.1002/jqs.2565

    Article  Google Scholar 

  86. Walker MJC, Head MJ, Lowe J, Berkelhammer M, Björck S, Cheng H, Cwynar LC, Fisher D, Gkinis V, Long A, Newnham R, Rasmussen SO, Weiss H (2019) Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J Quat Sci 34(3):173–186. https://doi.org/10.1002/jqs.3097

    Article  Google Scholar 

  87. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller S A, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27(19):1791–1828. https://doi.org/10.1016/j.quascirev.2008.06.013

    Article  Google Scholar 

  88. Wegwerth A, Ganopolski A, Ménot G, Kaiser J, Dellwig O, Bard E, Lamy F, Arz HW (2015) Black Sea temperature response to glacial millennial-scale climate variability. Geophys Res Lett 42(19):8147–8154. https://doi.org/10.1002/2015GL065499

    Article  Google Scholar 

  89. Weiss H (2015) Megadrought, collapse, and resilience in late 3rd millennium BC Mesopotamia. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: a climatic breakdown as a cause for the collapse of the old world?: 7th Archaeological Conference of Central Germany, October 23-26, 2014 in Halle (Saale), Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte. pp 35-52

  90. Weiss H (2017) Seventeen kings who lived in tents. In: Höflmayer F (ed) The late third millennium in the Ancient Near East: Chronology, C14, and climate change. USA: University of Chicago, pp 131–162

  91. Weiss H, Courty MA, Wetterstrom W, Guichard F, Senior L, Meadow R, Curnow A (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science 261(5124):995–1004. https://doi.org/10.1126/science.261.5124.995

    Article  Google Scholar 

  92. Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The generic mapping tools version 6. Geochem Geophy Geosy 20(11):5556–5564. https://doi.org/10.1029/2019GC008515

    Article  Google Scholar 

  93. Yan YY (2005) Intertropical convergence zone (ITCZ). In: Oliver JE (ed) Encyclopedia of world climatology, Springer Netherlands, Dordrecht. pp 429–432. https://doi.org/10.1007/1-4020-3266-8_110

  94. Zanchetta G, Bini M, Vito MAD, Sulpizio R, Sadori L (2018) Tephrostratigraphy of paleoclimatic archives in central Mediterranean during the Bronze Age. Quat Int 499:186–194. https://doi.org/10.1016/j.quaint.2018.06.012

    Article  Google Scholar 

  95. Zanchetta G, Regattieri E, Giaccio B, Wagner B, Sulpizio R, Francke A, Vogel H, Sadori L, Masi A, Sinopoli G, Lacey JH, Leng MJ, Leicher N (2016) Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology. Biogeosciences 13(9):2757–2768. https://doi.org/10.5194/bg-13-2757-2016

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank to Ali Kerem Uludaǧ and Ahmet Dinçer Çevik for their inspiring ideas. Dr. Andaç Hamamcı, Dr. Günter Landmann, Prof. Neil Macdonald, and Dr. James Lea read the manuscript and offered corrections. We sincerely thank the three anonymous reviewers for their constructive and helpful comments. All the graphs are plotted through an open source scientific plotting package, Veusz, version 3.0.1 (https://veusz.github.io/). Available data have been collected through web archives or from the corresponding authors. Digitally unavailable data have been digitized through an open source software, Engauge Digitizer, version 10.4 (https://markummitchell.github.io/engauge-digitizer/). All the filtering and interpolation procedure explained in the text are made through a commercial software (MATLAB 8.2, The MathWorks Inc., Natick, MA, 2013).

Funding

The authors received no financial support for the research, authorship, and/or publication of this article except travel funds for Dr. Greaves were provided by the University of Liverpool School of Histories, Languages and Cultures.

Author information

Affiliations

Authors

Contributions

Conceptualization: Z.B.Ö., A.M.G., and S.A.Ö. Data collection and literature review: Z.B.Ö. and S.A.Ö. Methodology: Z.B.Ö. and M.S.Ö. Data analysis and interpretation of the results: Z.B.Ö., M.S.Ö., A.M.G., and S.A.Ö. Writing—original draft preparation: Z.B.Ö., M.S.Ö., A.M.G., and S.A.Ö. Writing—review and editing: Z.B.Ö., A.M.G., and M.S.Ö. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Z. B. Ön.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 6.77 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ön, Z.B., Greaves, A.M., Akçer-Ön, S. et al. A Bayesian test for the 4.2 ka BP abrupt climatic change event in southeast Europe and southwest Asia using structural time series analysis of paleoclimate data. Climatic Change 165, 7 (2021). https://doi.org/10.1007/s10584-021-03010-6

Download citation

Keywords

  • Causal impact
  • Holocene
  • Rapid climate change
  • Early Bronze Age
  • Eastern Mediterranean